• Title/Summary/Keyword: Magnetic device

Search Result 932, Processing Time 0.031 seconds

A Study on the Deformation control of Free Surface of Magnetic Fluid (자성유체 자유표면의 형상 제어에 관한 연구)

  • 안창호;김대영;지병걸;이은준;박명관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.297-300
    • /
    • 2002
  • In this study, the deformation of the free surface motion of a magnetic fluid for the change in electromagnetic force is discussed and carried out theoretically and experimentally on the basis of Rosensweig Ferrohydrodynamic Bernoulli Equation. While applied magnetic fields are induced by 4$\times$4 electromagnet located under the magnetic fluid, the surface of the magnetic fluid is formed the balance of surface force, gravity, pressure difference, magnetic normal pressure and magnetic body farce. In case, magnetic fluid in characteristics of fluid adjusted to the opposite direction of the gravity direction. thus, the device of a magnetic fluid proposed the surface actuator. The device of surface deformation as well comparison between numerical simulation and experiments as will be presented.

  • PDF

Magnetic beads separation using a multi-layered microfluidic channel (다층구조의 미세유체채널을 이용한 자성입자 분리)

  • Lee, Hye-Lyn;Song, Suk-Heung;Jung, Hyo-Il
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1685-1686
    • /
    • 2008
  • This paper presents the design and experiment results of a multi-layered microsystem for magnetic bead applications. The magneto-microfluidic device is designed for capable of separating magnetic beads. In the presence of the magnetic field, magnetic beads are attracted and moved to high gradient magnetic fields. A multi-layered microfluidic channel consists of top and bottom layers in order to separate magnetic beads in the vertical direction. Our channel is easily integrated magnetic cell sorter, especially on-chip microelectromagnet or permanent magnet device. Fast separation of magnetic beads in top and bottom channels can be used in high throughput screening to monitor the efficiency of blood and drug compounds.

  • PDF

Feasibility Study of Positioning Device Using Magnetic Suspension System of Out of Plane Direction Forces (면외 방향의 자기력을 이용한 자기 서스펜션 시스템의 위치결정기구로의 적용 가능성)

  • Lee, Sang-Heon;Baek, Yoon-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1941-1948
    • /
    • 2003
  • This paper is about feasibility study of positioning device using magnetic suspension system which uses only vertical magnetic forces. The proposed system has inherited advantages from contact-free system, simple structure, and high expansibility in operating range different from conventional positioning devices. In this paper, the structure and operating principle are described and the linearized magnetic force and dynamic model are obtained. With the linear control theory, the experiments are executed. finally, the experimental results are shown.

Detection Property of Red Blood Cell-Magnetic Beads Using Micro Coil-Channeland GMR-SV Device (마이크로 코일-채널과 GMR-SV 소자를 이용한 적혈구-자성비드 검출 특성연구)

  • Park, Ji-Soo;Kim, Nu-Ri;Jung, Hyun-Jun;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.1
    • /
    • pp.16-21
    • /
    • 2015
  • The micro device, coil, and channel for the biosensor integrated with the GMR-SV device based on the antiferromagnetic IrMn layer was fabricated by the light lithography process. When RBCs coupled with several magnetic beads with a diameter of $1{\mu}m$ passed on the micro channel, the movement of $RBC+{\mu}Beads$ is controlled by the electrical AC input signal. The $RBC+{\mu}Beads$ having a micro-magnetic field captured above the GMR-SV device is changed as the output signals for detection status. From these results, the GMR-SV device having the width magnitude of a few micron size can be applied as the biosensor for the analysis of a new magnetic property as the membrane's deformation of RBC coupled to magnetic beads.

Sensitivity Enhancement of a Vertical-Type CMOS Hall Device for a Magnetic Sensor

  • Oh, Sein;Jang, Byung-Jun;Chae, Hyungil
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.1
    • /
    • pp.35-40
    • /
    • 2018
  • This study presents a vertical-type CMOS Hall device with improved sensitivity to detect a 3D magnetic field in various types of sensors or communication devices. To improve sensitivity, trenches are implanted next to the current input terminal, so that the Hall current becomes maximum. The effect of the dimension and location of trenches on sensitivity is simulated in the COMSOL simulator. A vertical-type Hall device with a width of $16{\mu}m$ and a height of $2{\mu}m$ is optimized for maximum sensitivity. The simulation result shows that it has a 23% better result than a conventional vertical-type CMOS Hall device without a trench.

Electromagnetic Resonant Tunneling System: Double-Magnetic Barriers

  • Kim, Nammee
    • Applied Science and Convergence Technology
    • /
    • v.23 no.3
    • /
    • pp.128-133
    • /
    • 2014
  • We study the ballistic spin transport properties in a two-dimensional electron gas system in the presence of magnetic barriers using a transfer matrix method. We concentrate on the size-effect of the magnetic barriers parallel to a two-dimensional electron gas plane. We calculate the transmission probability of the ballistic spin transport in the magnetic barrier structure while varying the width of the magnetic barriers. It is shown that resonant tunneling oscillation is affected by the width and height of the magnetic barriers sensitively as well as by the inter-spacing of the barriers. We also consider the effect of additional electrostatic modulation on the top of the magnetic barriers, which could enhance the current spin polarization. Because all-semiconductor-based devices are free from the resistance mismatch problem, a resonant tunneling structure using the two-dimensional electron gas system with electric-magnetic modulation would play an important role in future spintronics applications. From the results here, we provide information on the physical parameters of a device to produce well-defined spin-polarized current.

Fully Integrated Electromagnetic Noise Suppressors Incorporated with a Magnetic Thin Film on an Oxidized Si Substrate

  • Sohn, Jae-Cheon;Han, S.H.;Yamaguchi, Masahiro;Lim, S.H.
    • Journal of Magnetics
    • /
    • v.12 no.1
    • /
    • pp.21-26
    • /
    • 2007
  • Si-based electromagnetic noise suppressors on coplanar waveguide transmission lines incorporated with a $SiO_2$ dielectric layer and a nanogranular Co-Fe-Al-O magnetic thin film are reported. Unlike glass-based devices, large signal attenuation is observed even in the bare structure without coating the magnetic thin film. Much larger signal attenuation is achieved in fully integrated devices. The transmission scattering parameter ($S_{21}$) is as small as -90 dB at 20 GHz at the following device dimensions; the thicknesses of the $SiO_2$ and Co-Fe-Al-O thin films are 0.1 $\mu$m and 1 $\mu$m, respectively, the length of the transmission line is 15 mm, and the width of the magnetic thin film is 2000 $\mu$m. In all cases, the reflection scattering parameter ($S_{11}$) is below -10 dB over the whole frequency band. Additional distributed capacitance formed by the Cu transmission line/$SiO_2$/Si substrate is responsible for these characteristics. It is considered that the present noise suppressors based on the Si substrate are a first important step to the realization of MMIC noise suppressors.

Outcome of Rehabilitation Device Driven by Magnetic Force in Stroke Patients (뇌졸중 환자에서 자기력에 의해 유도되는 재활운동기기)

  • Park, Ji-Woo;Kim, Min-Su
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.15 no.4
    • /
    • pp.101-109
    • /
    • 2020
  • PURPOSE: This study investigates the therapeutic effect of a prototype of a hand rehabilitation device based on magnetic forces. METHODS: Using an electromagnet and permanent magnets, we developed an end effector type device that induces various movements of the finger in accordance with the magnetic field direction. A total of 26 subacute stroke patients were enrolled and assigned to two groups in this randomized controlled trial. The intervention group received 30 minutes hand rehabilitation therapy per day for 4 weeks, using the device developed by us. Conventional physical therapies were conducted equally twice a day, 30 minutes per session, during the same period in both groups. RESULTS: After 4 weeks, rate of the Wolf Motor Function Test as a primary outcome measure showed significant improvement in the intervention group as compared to control group(p = .036). Scores of the Manual Function Test and Fugl-Meyer Assessment of upper limb were also significantly increased in the intervention group as compared to control group(p = .038 and p = .042, respectively). Moreover, the Korean version of Modified Barthel Index tended to improve after subjecting to physical therapy in both groups. CONCLUSION: Our results indicate that the novel hand rehabilitation device developed using a magnetic force, improves the hand motor functions and activities of daily life in subacute stroke patients.

Magnetic Resonance Imaging Meets Fiber Optics: a Brief Investigation of Multimodal Studies on Fiber Optics-Based Diagnostic / Therapeutic Techniques and Magnetic Resonance Imaging

  • Choi, Jong-ryul;Oh, Sung Suk
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.218-228
    • /
    • 2021
  • Due to their high degree of freedom to transfer and acquire light, fiber optics can be used in the presence of strong magnetic fields. Hence, optical sensing and imaging based on fiber optics can be integrated with magnetic resonance imaging (MRI) diagnostic systems to acquire valuable information on biological tissues and organs based on a magnetic field. In this article, we explored the combination of MRI and optical sensing/imaging techniques by classifying them into the following topics: 1) functional near-infrared spectroscopy with functional MRI for brain studies and brain disease diagnoses, 2) integration of fiber-optic molecular imaging and optogenetic stimulation with MRI, and 3) optical therapeutic applications with an MRI guidance system. Through these investigations, we believe that a combination of MRI and optical sensing/imaging techniques can be employed as both research methods for multidisciplinary studies and clinical diagnostic/therapeutic devices.

Magnetic separation device for paramagnetic materials operated in a low magnetic field

  • Mishima, F.;Nomura, N.;Nishijima, S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.3
    • /
    • pp.19-23
    • /
    • 2022
  • We have been developing a magnetic separation device that can be used in low magnetic fields for paramagnetic materials. Magnetic separation of paramagnetic particles with a small particle size is desired for volume reduction of contaminated soil in Fukushima or separation of iron scale from water supply system in power plants. However, the implementation of the system has been difficult due to the needed magnetic fields is high for paramagnetic materials. This is because there was a problem in installing such a magnet in the site. Therefore, we have developed a magnetic separation system that combines a selection tube and magnetic separation that can separate small sized paramagnetic particles in a low magnetic field. The selection tube is a technique for classifying the suspended particles by utilizing the phenomenon that the suspended particles come to rest when the gravity acting on the particles and the drag force are balanced when the suspension is flowed upward. In the balanced condition, they can be captured with even small magnetic forces. In this study, we calculated the particle size of paramagnetic particles trapped in a selection tube in a high gradient magnetic field. As a result, the combination of the selection tube and HGMS (High Gradient Magnetic Separation-system) can separate small sized paramagnetic particles under low magnetic field with high efficiency, and this paper shows its potential application.