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Magnetic Resonance Imaging Meets 
Fiber Optics: a Brief Investigation of 
Multimodal Studies on Fiber Optics-
Based Diagnostic / Therapeutic 
Techniques and Magnetic Resonance 
Imaging

INTRODUCTION

Magnetic resonance imaging (MRI) diagnostic systems can acquire information 
about biological tissues and organs based on a magnetic field that resonates by 
irradiating radio frequency waves inside a strong magnetic field. Because of its non-
invasiveness and negligible radiation exposure compared to conventional radiographic 
imaging instruments, MRI systems have been widely employed to diagnose diseases 
(1-3), guide images for interventional therapies (4-6), and study functions of organs 
(7-9). Conversely, owing to the strong magnetic field present inside the MRI system, 
it is difficult to introduce electrical devices and metallic components that exhibit 
ferromagnetism or paramagnetism to perform multimodal diagnostics or image-guided 
treatments. To overcome this challenge, several research groups have developed and 
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Due to their high degree of freedom to transfer and acquire light, fiber optics can be 
used in the presence of strong magnetic fields. Hence, optical sensing and imaging 
based on fiber optics can be integrated with magnetic resonance imaging (MRI) 
diagnostic systems to acquire valuable information on biological tissues and organs 
based on a magnetic field. In this article, we explored the combination of MRI and 
optical sensing/imaging techniques by classifying them into the following topics: 1) 
functional near-infrared spectroscopy with functional MRI for brain studies and brain 
disease diagnoses, 2) integration of fiber-optic molecular imaging and optogenetic 
stimulation with MRI, and 3) optical therapeutic applications with an MRI guidance 
system. Through these investigations, we believe that a combination of MRI and 
optical sensing/imaging techniques can be employed as both research methods for 
multidisciplinary studies and clinical diagnostic/therapeutic devices.
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applied diagnostic/therapeutic tools and modalities that are 
suitable for use in MRI systems. For instance, research and 
clinical implementations on surgical robots for treating a 
patient remotely within a strong magnetic field (10, 11) and 
MRI-guided ultrasound ablation for tumor treatments (12-
14) have actively progressed.

Advantages of using optical sensing, imaging, diagnosis, 
and treatment techniques include their low invasiveness, 
high resolution, and acquiring biomedical information 
using specialized functional optical probes. Therefore, 
optical sensing and imaging techniques are used in various 
applications ranging from in vitro diagnostics to clinical 
applications (15-18). Fiber optics are applied in medical 
sensors, endoscopes, and therapeutic probes because they 
provide high degrees of freedom to transfer and acquire 
light (19-21). With optical fibers composed of non-metal 
ends, they can be used even in the presence of strong 
magnetic fields. Therefore, studies that apply optical 
fibers in MRI systems and implement optical sensing and 
imaging in combination with MR images have been actively 
conducted from preclinical assays to clinical applications.

In this article, we explored optical sensing, imaging, 
diagnostic, and therapeutic techniques based on fiber optics 
integrated with MRI by classifying them into the following 
topics: 1) functional near-infrared spectroscopy (fNIRS) 
with functional MRI (fMRI) for brain studies and brain-
related disease diagnoses, 2) integration of fiber-optic 
molecular imaging and optogenetic stimulation with MRI, 
and 3) optical therapeutic applications with MRI guidance. 
Recent studies conducted on each topic were investigated. 
Additional techniques required for interdisciplinary 
studies in fields of MRI and optical sensing/imaging are 
summarized in the section of concluding remarks. Through 
this investigation, we expect that the combination of 
MRI and optical sensing/imaging techniques can be used 
as effective research methods and clinical diagnostic/
therapeutic techniques.

Functional Near-Infrared Spectroscopy with MRI for 
Brain Studies

Functional near-infrared spectroscopy (fNIRS) is a 
brain imaging modality that measures oxy-, deoxy-, and 
hemoglobin concentrations in specific brain regions using 
near-infrared light with multiple wavelengths (22-25). 
Information acquired by fNIRS is mainly related to blood 
oxygenation level-dependent (BOLD) signals provided by 
fMRI, which obtains information about cerebral activities 
and functions of a particular brain region using MRI (26). 

Compared with fMRI, fNIRS is advantageous in terms 
of having a higher temporal resolution and ability to 
simultaneously analyze oxy-, deoxy-, and hemoglobin 
concentrations. Conversely, advantages of fMRI include 
its higher spatial resolution, the ability to acquire 
structural brain images and map them together, pre-
existing literature, and rationale for utilization in brain 
research. fNIRS instruments that consist of fiber optics 
coupled with infrared light sources and photodetectors 
can simultaneously measure hemoglobin concentrations 
using fMRI. This indicates that both fNIRS and fMRI can 
provide cross-validated information about brain activity 
without compromising their respective advantages. 
Therefore, combined fNIRS-fMRI has been utilized in 
various applications, including studying brain functions, 
exploring brain disease diagnostic indicators, and validating 
treatment/rehabilitation techniques as follows.

Gagnon et al. (27) have performed concurrent fNIRS-fMRI 
measurements to classify hemodynamic responses in the 
cortex from fNIRS signals mixed with hemoglobin dynamics 
in blood vessels in the cortex and a pial surface. Cortical 
contributions in oxy-/deoxy- and total hemoglobin in fNIRS 
were analyzed with a combined result of Monte Carlo 
simulation using structural/angiographic MR brain images 
and fNIRS-fMRI measurements through motor stimulations. 
Duan et al. (28) have combined fNIRS and fMRI to analyze 
and compare the functional connectivity of the resting-
state brain. Additionally, studies have been conducted 
to converge and explore associations of data acquired 
through fNIRS and fMRI while maintaining high temporal 
and spatial resolution (29, 30). Funane et al. (31) have 
validated a novel technique for obtaining fNIRS signals at 
several depths by placing light sources and photodetectors 
at different distances using concurrent fNIRS-fMRI. 
Liu et al. (32) have applied fNIRS and fMRI to analyze 
functional hemodynamics in a brain region associated 
with verbal communication and speech comprehension by 
listeners. When two subjects measured by fNIRS and fMRI, 
respectively, heard the same story, hemodynamics measured 
by fNIRS and BOLD fMRI showed a high correlation. 
However, when two listeners heard different stories, the 
hemodynamics had no significant correlation as shown 
in Figure 1. Based on such study, deriving the relationship 
between hemodynamics measured by fNIRS and BOLD 
fMRI signals and acquiring a highly relevant brain region 
for specific brain functions can be utilized to analyze brain 
activities and functions in various scenarios. 

Research has also been actively conducted to use fNIRS 
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as a medical diagnostic device for brain disorders using 
simultaneous measurement and correlation analysis of 
fNIRS and fMRI. As a representative study, Amyot et al. 
(33) have investigated a technique to analyze and diagnose 
cerebrovascular damage after traumatic brain injuries 
using fNIRS and fMRI. Furthermore, Matarasso et al. (34) 
have established a system that combines real-time fNIRS 
and fMRI for feedback to promote motor function recovery 
after a stroke (34, 35). Integration and application of 
rehabilitation modalities such as volitional wrist extension 
training or functional electrical stimulations with the real-
time fNIRS-fMRI system have the potential to improve 
recovery in stroke patients.

Integration of Fiber-Optic Molecular Imaging and 
Stimulation for MRI

MRI is an important research tool for noninvasive 
acquisition of structural images and BOLD functional MR 
images in preclinical studies of brain functions (36-38). 
Optical indicators such as calcium indicators (39, 40) and 
voltage-sensitive dyes (41, 42) can represent activities in 
certain parts of the brain. Furthermore, they can be applied 
to animal models for neuroimaging in preclinical studies 
(43-45). In preclinical brain studies, MRI has advantages 
of acquiring whole brain images and low invasiveness 
without special imaging probes. Optical sensing and 
imaging can obtain high-resolution neural information that 
is difficult to acquire using MRI. Merits in each modality 
are complementary to brain studies. To obtain concurrent 
information by optical measurements and MR imaging, 

Fig. 1. An application of functional near-infrared spectroscopy with structural/functional magnetic resonance imaging to 
establish a correlation between hemodynamics acquired when a listener heard the story of E2 during fMRI measurement. 
Oxygenated hemoglobin dynamics measured by fNIRS indicated a high correlation with BOLD fMRI when the listener heard 
the story of E2. However, in the case of other languages or stories, there was no significant correlation between BOLD 
fMRI signals and hemoglobin dynamics measured by fNIRS. The map below shows the result of exploring brain regions 
with a high correlation (red) and no significant correlation (blue) between oxygenated hemoglobin dynamics captured by 
fNIRS and BOLD fMRI in this experiment. ΔHbO-BOLD indicates a correlation between changes in BOLD fMRI signals and 
oxygenated hemoglobin measured by fNIRS. ΔHbR-BOLD indicates a correlation between changes in BOLD fMRI signals and 
deoxygenated hemoglobin measured by fNIRS. Deriving the relationship between hemodynamics measured by fNIRS and 
BOLD fMRI signals and acquiring a highly relevant brain region for the specific brain functions could be utilized to analyze 
brain activities and functions in more various scenarios compared with using MRI only. Reprint of figures in (32) is permitted 
by Springer Nature under the terms of the Creative Commons CC BY license.
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several research instruments have been developed by 
inserting optical fibers into MRI systems. Preclinical brain 
studies using these tools have been conducted by several 
research groups as follows.

Schulz et al. (46) have developed fiber-optic probes and 
a coil system that can be mounted inside the MRI system. 
They then conducted a study to simultaneously measure 
calcium flux using structural and fMRI in conjugation 
with an optical setup for fluorescence signal acquisition 
(46). By analyzing changes in BOLD fMRI and calcium 
flux caused by stimulation of the forepaw and hind paw, 
this study has confirmed that the fiber-optic calcium 
flux measurement setup is a potential tool to study brain 
function in conjugation with fMRI (46). Liang et al. (47) 
have developed a fiber-coupled photometry to measure 
GCaMP6, a genetically encoded fluorescent calcium 
indicator, of a selected region in a rat brain with the 
acquisition of BOLD fMRI. In their study, an additional 
optical fiber was inserted into the MRI system for visual 
stimulation and changes in calcium flux and BOLD signals 
were measured simultaneously by visual stimulation. It was 
observed that there was a time difference between the 
peak of calcium flux and BOLD signals for each rodent after 
visual stimulation. Therefore, fiber-coupled photometry 
can be potentially used to understand various neural 
activities. Schlegel et al. (48) have established a method of 
acute/chronic fiber-optic probe implementation, a method 
of MRI-integrated fluorescence signal acquisition, and 
protocols that can simultaneously record calcium flux-
related fluorescence signals and high-resolution BOLD fMRI. 
Studies have been conducted to obtain multidimensional 
cerebral calcium flux-related fluorescence images with 
BOLD fMRI by inserting an imaging fiber bundle consisting 
of multiple optical fibers inside an MRI system. As a 
representative study, Lake et al. (49) have developed a 
system that can simultaneously acquire the BOLD fMRI of 
the entire brain and fluorescence calcium flux images in 
multiple cerebral cortices using an imaging fiber bundle. 
The fiber bundle consisting of two million optical fibers was 
implemented in an MRI system (49). Results obtained by 
simultaneous acquisition of BOLD fMRI and fluorescence 
calcium flux images using the system and correlation 
analysis demonstrated the potential of utilizing fiber-based 
fluorescence imaging integrated with an MRI instrument for 
in-depth study of brain functions and cortical connectivity 
in rodents.

In vivo animal studies that use light to stimulate neurons 
in specific brain regions and analyze responses, functions 

in the selected area, and connectivity using high-resolution 
BOLD fMRI are mostly based on optogenetics, a novel 
biological technique that utilizes specific wavelengths 
of light to control genetically modified neurons (open or 
closed) to express light-sensitive ion channels (50-52). It 
is possible to explore brain function and connectivity by 
mounting fiber-optic probes in a specific brain region for 
genetically modified animal models and simultaneously 
performing optogenetic stimulation and BOLD fMRI of the 
entire brain. Desai et al. (53) have investigated a mountable 
fiber optic probe capable of delivering blue light to a mouse 
brain in a holder of an MRI system and analyzed changes 
in BOLD signals in each region caused by optogenetic 
neural stimulation in the primary somatosensory cortex 
and brain connectivity that can be estimated. This opto-
fMRI has been actively applied by several research groups in 
neuroscience to understand brain functions and responses 
to localized neural stimulation in various parts of the brain 
(54-58). In addition, optogenetic neural stimulation and 
fluorescence measurements can be independently combined 
by diverging light from the fiber or adding additional optical 
fibers in the configuration of optical systems outside the 
MRI system. Chen et al. (59) have investigated a fiber-
optic system for fluorescence calcium flux recording and 
optogenetic stimulations. They combined the system with 
an MR-compatible robotic arm to deliver optogenetic 
stimulations and obtain fluorescence signals in a certain 
position as shown in Figure 2 (59). Furthermore, Chen et al. 
(60) have developed an optical platform to simultaneously 
perform optogenetic neural stimulations, fluorescence 
calcium recording, and BOLD fMRI acquisitions of the entire 
brain by attaching a 473-nm laser light source to a fiber-
optic fluorescence calcium flux measurement setup.

Optical Therapeutic Applications with a Guidance of 
MRI

MRI can be applied to image guides for precise 
treatments because it can noninvasively monitor tissues 
and organs inside the body. Hence, treatments using MR-
compatible surgical robots, which can be guided using 
MRI, are actively being conducted from applied research 
to commercialization (10, 11, 61). Optical therapeutic 
techniques have advantages of high resolution and minimal 
invasiveness due to small sizes of fiber optic probes inserted. 
Therefore, they can be operated inside an MRI system. 
In this section, we investigated two optical techniques 
to perform precise treatment under the guidance of MR 
images. The first technique is MR-guided laser interstitial 
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thermal therapy (MRgLITT) to treat brain diseases. The 
second technique is MR-guided photodynamic therapy (PDT).

The MRgLITT technique is used for precise cauterization 
of tumors using light, especially brain tumors, leading to 
subsequent release of thermal energy focused at the end 
of the fiber-optic probe (62). MRgLITT uses this thermal 
energy to denature tumor proteins and remove them. 

In MRgLITT, MRI provides structural brain images and 
tumor locations. It also precisely monitors brain tissue 
temperature changes during laser irradiation to eliminate 
side effects such as denaturation of normal tissue due to 
excessive laser output (63). Schwarzmaier et al. (64, 65) 
have applied MRgLITT using a system consisting of fiber-
optic probes with a diffuser end, a continuous wave laser 

Fig. 2. (a) A schematic of a fiber-
opt ic  sys tem fo r  optogenet ic 
stimulations and fluorescence calcium 
flux measurements. Connections 
between the optical fiber and a MR-
compatible robotic arm device allow 
the fiber-optic probe to be precisely 
introduced into specific areas of 
the rodent brain. (b) Responses of 
fluorescence calcium flux and BOLD 
fMRI signals to stimuli at different 
locations, which can be identified 
by anatomical rapid acquisition with 
relaxation enhancement (RARE) 
MR images (on the left side of Fig. 
2b). The reprint of figures in (59) is 
permitted by Springer Nature under 
the terms of the Creative Commons 
CC BY license.

a

b
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source with a central wavelength of 1064 nm, a 0.5T MRI, 
and a navigation instrument to patients with recurrent 
glioblastomas and investigated the duration of survival and 
tumor size reduction. Carpentier et al. (66) have employed 
MRgLITT to treat metastatic intracranial tumors resistant to 
conventional treatments. In this clinical application, optical 
fiber probe designed to rapidly cool the probe and brain 
tissues by circulating sterile saline on the outer portion 
of the probe was used. Additionally, a tool called ‘cranial 
anchor’ allows the probe in accurately accessing tumor 
locations. Furthermore, MR thermometry and contrast 
agent (gadolinium) augmented T1-weighted MR images 
have been employed for precise laser interstitial thermal 
therapy. Hawasli et al. (67) have performed clinical MRgLITT 
for intracranial lesions using a probe that can irradiate 
the laser orthogonally. The effectiveness of MRgLITT was 
verified using T1/T2-weighted MRI and single photon 
emission computed tomography (SPECT) images (67). In 
addition, studies have been actively conducted to clinically 
apply MRgLITT for the treatment of brain tumors, which 
cannot be removed by anti-cancer drugs, radiation therapy, 
or conventional surgery (68-71).

MRgLITT is also used as a substitute of brain surgery for 
treating epilepsy based on precise cranial tissue cautery (66, 
72, 73). As a representative clinical application, Gupta et al. 
(74, 75) have applied a robot-assisted, stereotactic MRgLITT 
to treat extratemporal lobe epilepsy as described in Figure 3. 
Through the application of MRgLITT to 35 patients, MRgLITT 
as a safe and effective modality for treating extratemporal 
lobe epilepsy has been demonstrated.

PDT is a technique used to treat abnormal cells locally 
(such as carcinomas) using reactive substances containing 
photosensitive chemicals (76, 77). PDT treats the disease by 
activating oxygen to directly eliminate abnormal cells or 
block blood supplies connected to abnormal cells to prevent 
nourishment. Precise light irradiation to the location of 
lesions and activation of the photosensitizer are important 
in the practical application of PDT in clinical settings. 
Therefore, MRI-guided PDT has been developed for accurate 
PDT applications. Several research groups have verified MRI-
guided PDT in the preclinical research phase.

Gross et al. (78) have established PDT, which blocks blood 
supply to induce the death of melanoma. This treatment 
method was confirmed by applying optical fiber-based 
light irradiation inside an MRI system with simultaneous 
measurements of BOLD MR images (78). Researchers have 
used palladium-bacteriopheophorbide as a photosensitive 
agent of PDT and confirmed through MRI that palladium-

bacteriopheophorbide with near-infrared light can 
reduce BOLD MR signals by 25% to 40% in the region 
of melanoma (78). Leroy et al. (79) have investigated a 
technique to simultaneously monitor the application of PDT 
to treat brain tumors using diffusion and perfusion MRI. 
Bechet et al. (80) have developed a multifunctional nano-
agent with a photosensitizer and an MR contrast agent to 
perform PDT-based brain tumor treatments using an MRI 
guidance system. They confirmed that the nano-agent 
could be used to simultaneously acquire highly sensitive 
MR imaging while performing PDT-based treatment of brain 
cancer tissue. Furthermore, Xie et al. (81) have developed a 
manganese-doped layered double hydroxide nanoparticle-
based PDT agent that can induce cancer tissue necrosis in 
response to light with a central wavelength of 808 nm and 
a platform to expose light while receiving a guide to MRI. 

Concluding Remarks
In this article, fiber-optic sensing, imaging, diagnostic, 

and therapeutic techniques integrated with MRI are 
described. A combination of fNIRS and fMRI has potential 
applications in various research and biomedical fields, 
such as neuroscience, brain disease diagnosis, and 
treatment efficiency validation. The main advantage of 
combining fNIRS and fMRI is that each signal from these 
two modalities is independent of each other without any 
interference. In addition, because fMRI has a higher spatial 
resolution than fNIRS while fNIRS has a higher temporal 
resolution than fMRI, simultaneous measurement allows 
these two modalities to complement each other. In addition, 
fNIRS could be applied to more diverse scenarios for brain 
function analysis due to its low spatial constraints such 
as magnetic field shielding in MRI. When a significantly 
correlated brain region is established in cognitive tasks 
using the relationship between hemoglobin dynamics 
and BOLD signals by fNIRS and fMRI, respectively, a brain 
function analysis with a highly improved degree of freedom 
could be possible using fNIRS with mobility. 

Considering these points, further implementation with 
MR-compatible electroencephalography is expected to 
provide better information (82, 83). Studies that find 
correlation between fNIRS and fMRI through machine 
learning (84) can increase the feasibility of neuroimaging 
for brain function studies and medical applications. 
Fluorescence signal/image acquisition and optical brain 
stimulation using fiber-optic probes integrated with MRI 
systems have been applied to preclinical studies of small 
animals. The integration of optical fiber-based fluorescence 
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Fig. 3. (a) Overall procedure of MR-guided laser interstitial thermal therapy (MRgLITT) to treat temporal lobe epilepsy. (b) 
A computer tomographic (CT) image of a patient brain at two days after treatment using robot-assisted MRgLITT. Contrast-
enhanced T1 images (c) at the time of the treatment using MRgLITT and (d) at three months after the treatment. In an 
observation over three months following the treatment, an intense perineural enhancement of nerves was observed. Figures 
shown in (75) are reprinted with the permission from Frontiers Media S. A. under the terms of the Creative Commons 
Attribution License (CC BY).
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signal acquisition into MRI has the merit of simultaneously 
obtaining fluorescence-based biomolecular information 
on high-resolution structural and functional brain MRI. 
Optogenetic brain stimulation using fiber optics enables 
activation and deactivation of local brain regions using 
light. It can be applied as a great modality to identify 
the function and connectivity of specific brain regions 
in conjugation with MRI. Conversely, for utilization as a 
general-purpose research equipment, an imaging optical 
fiber, which consists of a bundle of optical fibers, is 
necessary to solve the high cost and difficulty in setting up 
the system. In addition, before applying fluorescence signal 
acquisition and optogenetic brain stimulation to clinical 
studies, the safety of optogenetic probes and fluorescent 
indicators must be verified. When additional system 
development, optimization, and preclinical applications 
are undertaken, these techniques can be employed in 
neuroscience research for large animals and advanced 
medical technologies such as optical stimulation-based 
brain-machine interfaces (85). MRgLITT, an optical tumor 
treatment with an MRI guidance system, has been used 
for the ablation of small brain tumors that cannot be 
treated using drugs or radiation therapy. MRgLITT has 
the advantage of being a minimally invasive brain tumor 
treatment compared with general surgeries. In particular, 
it can reduce the risk of treatment by a guide from brain 
MR images before and after tumor treatment. High-speed 
acquisition of MR images, the development of advanced 
MR sequences, and post-processing algorithms to analyze 
therapeutic effect can help active clinical applications of 
MRgLITT. In addition, the high cost of establishing a system 
of MRgLITT and the lack of sufficient clinical cases should 
be overcome for active utilization in clinical areas such as 
treatment of brain tumors. We propose that a combination 
of MRI and optical sensing/imaging techniques can be 
effectively used as a brain research modality and medical 
diagnostic/therapeutic technique.
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