Browse > Article
http://dx.doi.org/10.4283/JKMS.2015.25.1.016

Detection Property of Red Blood Cell-Magnetic Beads Using Micro Coil-Channeland GMR-SV Device  

Park, Ji-Soo (Department of Oriental Biomedical Engineering, Sangji University)
Kim, Nu-Ri (Department of Oriental Biomedical Engineering, Sangji University)
Jung, Hyun-Jun (Department of Oriental Biomedical Engineering, Sangji University)
Lee, Sang-Suk (Department of Oriental Biomedical Engineering, Sangji University)
Abstract
The micro device, coil, and channel for the biosensor integrated with the GMR-SV device based on the antiferromagnetic IrMn layer was fabricated by the light lithography process. When RBCs coupled with several magnetic beads with a diameter of $1{\mu}m$ passed on the micro channel, the movement of $RBC+{\mu}Beads$ is controlled by the electrical AC input signal. The $RBC+{\mu}Beads$ having a micro-magnetic field captured above the GMR-SV device is changed as the output signals for detection status. From these results, the GMR-SV device having the width magnitude of a few micron size can be applied as the biosensor for the analysis of a new magnetic property as the membrane's deformation of RBC coupled to magnetic beads.
Keywords
GMR(giant magnetoresistance)-SV(spin valve) device; micro coil; channel; biosensor; RBC (red blood cell); magnetic bead;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Rodney M. J. Cotterill, Biophysics; An Introduction, John Wiley & Sons, Ltd., West Sussex, England (2004).
2 J. Miyakoshi, Prog. Biophys. Mole. Bio. 87, 213 (2005).   DOI   ScienceOn
3 T. Strick, J. F. Allemand, V. Croquette, and D. Bensimon, Phys. Today 54, 46 (2001).
4 A. I. Zhernovoy, L. M. Sharshina, and V. A. Chirukhin, Bull. Exp. Bio. Medicine 3, 844 (2001).
5 T. Takeuchi, T. Mizuno, T. Higashi, and A. Yamagishi, and M. Date, J. Magn. Magn. Mater. 140, 1462 (1995).
6 M. Bartoszek and Z. Drzazga, J. Magn. Magn. Mater. 196, 573 (1999).
7 P. Nelson, Biological Physics; Energy, Information, Life, W. H. Freeman and Company, New York, USA (2004).
8 http://ko.wikipedia.org/wiki/ "hemoglobin".
9 S. X. Wang and A. M. Taratorin, Magnetic Information Storage Technology, San Diego, USA. Academic Press (1999).
10 J. G. Choi, Y. S. Park, and S. S. Lee, J. Korean Magn. Soc. 22, 173 (2012).   DOI   ScienceOn
11 P. Khajidmaa and S. S. Lee, J. Korean Magn. Soc. 23, 193 (2013).   DOI   ScienceOn
12 S. S. Lee, S. H. Park, and K. S. Soh, New Physics: Sae Mulli 52, 564 (2006).
13 S. H. Park, K. S. Soh, M. C. Ahn, D. G. Hwang, and S. S. Lee, J. Korean Magn. Soc. 16, 157 (2006).   DOI   ScienceOn
14 S. H. Park, K. S. Soh, D. G. Hwang, J. R. Rhee, and S. S. Lee, J. Magn. 13, 30 (2008).   DOI   ScienceOn
15 J. Y. Lee, M. J. Kim, and S. S. Lee, New Physics: Sae Mulli, 64, 958 (2014).   DOI
16 J. Y. Lee, M. J. Kim, J. K. Rhee, and S. S. Lee, J. Korean Magn. Soc. 24, 101 (2014).   DOI   ScienceOn
17 D. Y. Park, H. R. Lee, J. Y. Kim, Y. E. Ha, Y. I. Noh, M. S. Rho, I. H. Jang, and S. S. Lee, New Physics: Sae Mulli 64, 1039 (2014).   DOI
18 P. Robert and C. B. Roger, Bioelectricity - A Quantitative Approach, 3rd ed. Springer, (2007) Chap. 7.
19 P. Davidovits, Physics in Biology and Medicine, 3rd ed., Academic Press (2008) Chap. 14.