Browse > Article
http://dx.doi.org/10.4283/JMAG.2007.12.1.021

Fully Integrated Electromagnetic Noise Suppressors Incorporated with a Magnetic Thin Film on an Oxidized Si Substrate  

Sohn, Jae-Cheon (Nano Device Research Center, Korea Institute of Science and Technology)
Han, S.H. (Nano Device Research Center, Korea Institute of Science and Technology)
Yamaguchi, Masahiro (Department of Electrical and Communication Engineering, Tohoku University)
Lim, S.H. (Department of Materials Science and Engineering, Korea University)
Publication Information
Abstract
Si-based electromagnetic noise suppressors on coplanar waveguide transmission lines incorporated with a $SiO_2$ dielectric layer and a nanogranular Co-Fe-Al-O magnetic thin film are reported. Unlike glass-based devices, large signal attenuation is observed even in the bare structure without coating the magnetic thin film. Much larger signal attenuation is achieved in fully integrated devices. The transmission scattering parameter ($S_{21}$) is as small as -90 dB at 20 GHz at the following device dimensions; the thicknesses of the $SiO_2$ and Co-Fe-Al-O thin films are 0.1 $\mu$m and 1 $\mu$m, respectively, the length of the transmission line is 15 mm, and the width of the magnetic thin film is 2000 $\mu$m. In all cases, the reflection scattering parameter ($S_{11}$) is below -10 dB over the whole frequency band. Additional distributed capacitance formed by the Cu transmission line/$SiO_2$/Si substrate is responsible for these characteristics. It is considered that the present noise suppressors based on the Si substrate are a first important step to the realization of MMIC noise suppressors.
Keywords
electromagnetic noise suppressor; integrated device; Si substrate; coplanar waveguide transmission line; magnetic thin film;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. K. Campbell, Surface Acoustic Wave Devices for Mobile and Wireless Communications (Academic Press, New York, 1998), Chap. 19
2 J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications (John Wiley & Sons, New York, 2001), Chaps. 5 & 6
3 J. C. Sohn, S. H. Han, M. Yamaguchi, and S. H. Lim, Appl. Phys. Lett. 89, 103501 (2006)
4 J. C. Sohn, S. H. Han, M. Yamaguchi, and S. H. Lim, J. Appl. Phys. 100, 124510 (2006)
5 K. H. Kim, M. Yamaguchi, K. I. Arai, H. Nagura, and S. Ohnuma, J. Appl. Phys. 93, 8002 (2003)
6 K. H. Kim, M. Yamaguchi, S. Ikeda, and K. I. Arai, IEEE Trans. Magn. 39, 3031 (2003)   DOI   ScienceOn
7 K. H. Kim, M. Yamaguchi, K. I. Arai, N. Matsushita, and M. Abe, Trans. Magn. Soc. Japan 3, 133 (2003)
8 J. C. Sohn, D. J. Byun, and S. H. Lim, Phys. Stat. Sol. (a) 201, 1786 (2004)
9 J. C. Sohn, S. H. Han, M. Yamaguchi, and S. H. Lim, Appl. Phys. Lett. (Accepted)
10 J. C. Sohn, S. H. Han, K. H. Kim, M. Yamaguchi, and S. H. Lim, J. Magn. Magn. Mater. 311, 708 (2007)
11 B. C. Wadell, Transmission Line Design Handbook (Artech House, Boston, 1991), Chap. 3
12 J. C. Sohn, D. J. Byun, and S. H. Lim, J. Magn. Magn. Mater. 272-276, 1500 (2004)
13 R. W. Ziolkowski, IEEE Trans Antennas Propagat. 51, 1516 (2003)
14 M. Yamaguchi, Ki-Hyeon Kim, Takashi Kuribara, and Ken-Ichi Arai, IEEE Trans. Magn. 38, 3183 (2002)
15 A. M. Nicolson and G. F. Ross, IEEE Trans. Instrum. Meas. 19, 377 (1970)
16 Walter Barry, IEEE Trans. Microwave Theory Tech. 34, 80 (1986)   DOI   ScienceOn
17 W. B. Weir, Proc. IEEE 62, 33 (1974)