DOI QR코드

DOI QR Code

Detection Property of Red Blood Cell-Magnetic Beads Using Micro Coil-Channeland GMR-SV Device

마이크로 코일-채널과 GMR-SV 소자를 이용한 적혈구-자성비드 검출 특성연구

  • Park, Ji-Soo (Department of Oriental Biomedical Engineering, Sangji University) ;
  • Kim, Nu-Ri (Department of Oriental Biomedical Engineering, Sangji University) ;
  • Jung, Hyun-Jun (Department of Oriental Biomedical Engineering, Sangji University) ;
  • Lee, Sang-Suk (Department of Oriental Biomedical Engineering, Sangji University)
  • 박지수 (상지대학교 한방의료공학과) ;
  • 김누리 (상지대학교 한방의료공학과) ;
  • 정현준 (상지대학교 한방의료공학과) ;
  • 이상석 (상지대학교 한방의료공학과)
  • Received : 2015.01.15
  • Accepted : 2015.02.12
  • Published : 2015.02.28

Abstract

The micro device, coil, and channel for the biosensor integrated with the GMR-SV device based on the antiferromagnetic IrMn layer was fabricated by the light lithography process. When RBCs coupled with several magnetic beads with a diameter of $1{\mu}m$ passed on the micro channel, the movement of $RBC+{\mu}Beads$ is controlled by the electrical AC input signal. The $RBC+{\mu}Beads$ having a micro-magnetic field captured above the GMR-SV device is changed as the output signals for detection status. From these results, the GMR-SV device having the width magnitude of a few micron size can be applied as the biosensor for the analysis of a new magnetic property as the membrane's deformation of RBC coupled to magnetic beads.

광 리소그래피 공정을 이용하여 GMR-SV(Giant magnetoresistance-Spin valve) 다층박막 위에 마이크로 크기의 바이오센서용 소자와 코일-채널을 적층으로 각각 제작하였다. 직경 $1{\mu}m$ 크기인 여러 개의 자성비드가 결합된 적혈구가 마이크로 채널로 지나갈 때 코일에 인가하는 AC 신호로 정지 또는 통과하는 적혈구 움직임을 조절하였다. GMR-SV 소자 위에 포획된 적혈구-자성비드가 갖는 미세자기장은 자기저항비를 변화시켜 검출용 출력신호 특성으로 나타났다. 이것을 이용하여 자성비드를 결합한 적혈구의 막 변형에 따른 운동 특성을 분석하는 바이오센서로 활용할 수 있음을 보여주었다.

Keywords

References

  1. Rodney M. J. Cotterill, Biophysics; An Introduction, John Wiley & Sons, Ltd., West Sussex, England (2004).
  2. J. Miyakoshi, Prog. Biophys. Mole. Bio. 87, 213 (2005). https://doi.org/10.1016/j.pbiomolbio.2004.08.008
  3. T. Strick, J. F. Allemand, V. Croquette, and D. Bensimon, Phys. Today 54, 46 (2001).
  4. A. I. Zhernovoy, L. M. Sharshina, and V. A. Chirukhin, Bull. Exp. Bio. Medicine 3, 844 (2001).
  5. T. Takeuchi, T. Mizuno, T. Higashi, and A. Yamagishi, and M. Date, J. Magn. Magn. Mater. 140, 1462 (1995).
  6. M. Bartoszek and Z. Drzazga, J. Magn. Magn. Mater. 196, 573 (1999).
  7. P. Nelson, Biological Physics; Energy, Information, Life, W. H. Freeman and Company, New York, USA (2004).
  8. http://ko.wikipedia.org/wiki/ "hemoglobin".
  9. S. X. Wang and A. M. Taratorin, Magnetic Information Storage Technology, San Diego, USA. Academic Press (1999).
  10. J. G. Choi, Y. S. Park, and S. S. Lee, J. Korean Magn. Soc. 22, 173 (2012). https://doi.org/10.4283/JKMS.2012.22.5.173
  11. P. Khajidmaa and S. S. Lee, J. Korean Magn. Soc. 23, 193 (2013). https://doi.org/10.4283/JKMS.2013.23.6.193
  12. S. S. Lee, S. H. Park, and K. S. Soh, New Physics: Sae Mulli 52, 564 (2006).
  13. S. H. Park, K. S. Soh, M. C. Ahn, D. G. Hwang, and S. S. Lee, J. Korean Magn. Soc. 16, 157 (2006). https://doi.org/10.4283/JKMS.2006.16.3.157
  14. S. H. Park, K. S. Soh, D. G. Hwang, J. R. Rhee, and S. S. Lee, J. Magn. 13, 30 (2008). https://doi.org/10.4283/JMAG.2008.13.1.030
  15. J. Y. Lee, M. J. Kim, and S. S. Lee, New Physics: Sae Mulli, 64, 958 (2014). https://doi.org/10.3938/NPSM.64.958
  16. J. Y. Lee, M. J. Kim, J. K. Rhee, and S. S. Lee, J. Korean Magn. Soc. 24, 101 (2014). https://doi.org/10.4283/JKMS.2014.24.4.101
  17. D. Y. Park, H. R. Lee, J. Y. Kim, Y. E. Ha, Y. I. Noh, M. S. Rho, I. H. Jang, and S. S. Lee, New Physics: Sae Mulli 64, 1039 (2014). https://doi.org/10.3938/NPSM.64.1039
  18. P. Robert and C. B. Roger, Bioelectricity - A Quantitative Approach, 3rd ed. Springer, (2007) Chap. 7.
  19. P. Davidovits, Physics in Biology and Medicine, 3rd ed., Academic Press (2008) Chap. 14.

Cited by

  1. Distribution of Magnetic Field Depending on the Current in the μ-turn Coil to Capture Red Blood Cells vol.25, pp.5, 2015, https://doi.org/10.4283/JKMS.2015.25.5.162