• 제목/요약/키워드: MEMS Package

검색결과 51건 처리시간 0.024초

열전 냉각기를 포함하는 볼로미터 패키지의 SPICE 등가 모델링 (SPICE-Compatible Modeling of a Microbolometer Package Including Thermoelectric Cooler)

  • 한창석;박승만;김남환;한승오
    • 센서학회지
    • /
    • 제22권1호
    • /
    • pp.44-48
    • /
    • 2013
  • For a successful commercialization of microbolometer, it is required to develop a robust package including thermal stabilizing mechanism. In order to regulate the temperature within some operating range, thermoelectric cooler is generally used but it's not easy to model the whole package due to the coupled physics nature of thermoelectric cooler. In this paper, SPICE-compatible modeling methodology of a microbolometer package is presented, whose steady-state results matched well with FEM results at the maximum difference of 5.95%. Although the time constant difference was considerable as 15.7%, it can be offset by the quite short simulation time compared to FEM simulation. The developed model was also proven to be useful for designing the thermal stabilizer through parametric and transient analyses under the various working conditions.

RF MEMS 스위치 적용을 위한 밀봉성 패키지의 특성 연구 (Characteristic study of hermetic package for RF MEMS switch)

  • 방용승;김종만;김용성;김정무;김용권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1464-1465
    • /
    • 2008
  • In this paper, we compared the mechanical characteristics between LTCC-based RF MEMS packaging structures fabricated using two different types of bonding materials; BCB and gold-tin. The BCB-based packages showed an average shear strength of 32.1 MPa and helium leak rate of $1.76{\times}10^{-8}atm{\cdot}cc/sec$ for a cavity volume of $0.45\times10^{-3}cc$, while the packages bonded by gold-tin layer (80 wt.% gold, 20 wt.% tin) showed an average shear strength of 42.70 MPa and helium leak rate $1.38{\times}10^{-8}atm{\cdot}cc/sec$ for a cavity volume of $1.21{\times}10^{-3}cc$.

  • PDF

MEMS 공정을 이용한 BGA IC 패키지용 테스트 소켓의 제작 (Fabrication of MEMS Test Socket for BGA IC Packages)

  • 김상원;조찬섭;남재우;김봉환;이종현
    • 대한전자공학회논문지SD
    • /
    • 제47권11호
    • /
    • pp.1-5
    • /
    • 2010
  • 본 논문에서는 외팔보 배열 구조를 가지는 MEMS 테스트 소켓을 SOI 웨이퍼를 이용하여 개발하였다. 외팔보는 연결부분의 기계적 취약점을 보완하기 위해 모서리가 둥근 형태를 가지고 있다. 측정에 사용 된 BGA IC 패키지는 볼 수 121개, 피치가 $650{\mu}m$, 볼 직경 $300{\mu}m$, 높이 $200{\mu}m$ 을 가지고 있다. 제작된 외팔보는 길이 $350{\mu}m$, 최대 폭 $200{\mu}m$, 최소 폭 $100{\mu}m$, 두께가 $10{\mu}m$인 곡선 형태의 외팔보이다. MEMS 테스트 소켓은 lift-off 기술과 Deep RIE 기술 등의 미세전기기계시스템(MEMS) 기술로 제작되었다. MEMS 테스트 소켓은 간단한 구조와 낮은 제작비, 미세 피치, 높은 핀 수와 빠른 프로토타입을 제작할 수 있다는 장점이 있다. MEMS 테스트의 특성을 평가하기 위해 deflection에 따른 접촉힘과 금속과 팁 사이의 저항과 접촉저항을 측정하였다. 제작된 외팔보는 $90{\mu}m$ deflection에 1.3 gf의 접촉힘을 나타내었다. 신호경로저항은 $17{\Omega}$ 이하였고 접촉저항은 평균 $0.73{\Omega}$ 정도였다. 제작된 테스트 소켓은 향 후 BGA IC 패키지 테스트에 적용 가능 할 것이다.

Development of a MEMS-based H2S Sensor with a High Detection Performance and Fast Response Time

  • Dong Geon Jung;Junyeop Lee;Dong Hyuk Jung;Won Oh Lee;Byeong Seo Park;Daewoong Jung
    • 센서학회지
    • /
    • 제32권4호
    • /
    • pp.207-212
    • /
    • 2023
  • H2S is a toxic and harmful gas, even at concentrations as low as hundreds of parts per million; thus, developing an H2S sensor with excellent performance in terms of high response, good selectivity, and fast response time is important. In this study, an H2S sensor with a high response and fast response time, consisting of a sensing material (SnO2), an electrode, a temperature sensor, and a micro-heater, was developed using micro-electro-mechanical system technology. The developed H2S sensor with a micro-heater (circular type) has excellent H2S detection performance at low H2S concentrations (0-10 ppm), with quick response time (<16 s) and recovery time (<65 s). Therefore, we expect that the developed H2S sensor will be considered a promising candidate for protecting workers and the general population and for responding to tightened regulations.

Polymer MEMS 공정을 이용한 의료용 미세 부품 성형 기술 개발 (Development of micro check valve with polymer MEMS process for medical cerebrospinal fluid (CSF) shunt system)

  • 장준근;박찬영;정석;김중경;박훈재;나경환;조남선;한동철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.1051-1054
    • /
    • 2000
  • We developed the micro CSF (celebrospinal fluid) shunt valve with surface and bulk micromachining technology in polymer MEMS. This micro CSF shunt valve was formed with four micro check valves to have a membrane connected to the anchor with the four bridges. The up-down movement of the membrane made the CSF on & off and the valve characteristic such as open pressure was controlled by the thickness and shape of the bridge and the membrane. The membrane, anchor and bridge layer were made of the $O_2$ RIE (reactive ion etching) patterned Parylene thin film to be about 5~10 microns in thickness on the silicon wafer. The dimension of the rectangular nozzle is 0.2*0.2 $\textrm{mm}^2$ and the membrane 0.45 mm in diameter. The bridge width is designed variously from 0.04 mm to 0.12 mm to control the valve characteristics. To protect the membrane and bridge in the CSF flow, we developed the packaging system for the CSF micro shunt valve with the deep RIE of the silicon wafer. Using this package, we can control the gap size between the membrane and the nozzle, and protect the bridge not to be broken in the flow. The total dimension of the assembled system is 2.5*2.5 $\textrm{mm}^2$ in square, 0.8 mm in height. We could precisely control the burst pressure and low rate of the valve varing the design parameters, and develop the whole CSF shunt system using this polymer MEMS fabricated CSF shunt valve.

  • PDF

샌드 블러스터로 건식 식각한 마이크로 소자 패키지용 유리 웨이퍼의 표면 연구 (Study of sand blaster dry etched glass wafer surface for micro device package)

  • 김종석;남광우;좌성훈;권재홍;주병권
    • 센서학회지
    • /
    • 제15권4호
    • /
    • pp.245-250
    • /
    • 2006
  • In this paper, glass cap wafer for MEMS device package is fabricated by using sand blaster dry etcher and Its surface is studied. The surface of dry etched glass is analyzed by using SEM, and many glass particles and micro cracks are observed. If these kind of particles were dropped from glass to the surface of device, It would make critical failure to the operation of device. So, several cleaning and etching methods are induced to remove these kinds of dormant failure mode and optimized condition is found out.

TPMS 적용을 위한 가변 정전 용량형 압력센서 개발 (The development of a variable capacitive pressure sensor for TPMS(tire pressure monitoring system))

  • 최범규;김도형;오재근
    • 센서학회지
    • /
    • 제14권4호
    • /
    • pp.265-271
    • /
    • 2005
  • In this study, a variable capacitive pressure sensor is fabricated for TPMS (Tire Pressure Monitoring System). This study is for developing sensors which consecutively measure the tire pressure given as 30 psi from the industrial standard. For improving non-linearity of the prior capacitive pressure sensors, it is suggested that touch mode capacitive pressure sensor be applied. In addition, initial capacitance is designed as small as possible for the conformity to the wireless sensor. ANSYS, commercial FEA package, is used for designing and simulating the sensor. The device is progressed by MEMS (Micro Electro Mechanical Systems) fabrication and packaged with PDMS. The result is obtained sensitivity, 1 pF/psi, through a pressure test. The simulation result is discrepant from experiment one. Wafer's uniformity is presumed as the main reason of discrepancy.

쏠더를 이용한 웨이퍼 레벨 실장 기술 (A novel wafer-level-packaging scheme using solder)

  • 이은성;김운배;송인상;문창렬;김현철;전국진
    • 반도체디스플레이기술학회지
    • /
    • 제3권3호
    • /
    • pp.5-9
    • /
    • 2004
  • A new wafer level packaging scheme is presented as an alternative to MEMS package. The proof-of-concept structure is fabricated and evaluated to confirm the feasibility of the idea for MEMS wafer level packaging. The scheme of this work is developed using an electroplated tin (Sn) solder. The critical difference over conventional ones is that wafers are laterally bonded by solder reflow after LEGO-like assembly. This lateral bonding scheme has merits basically in morphological insensitivity and its better bonding strength over conventional ones and also enables not only the hermetic sealing but also its electrical interconnection solving an open-circuit problem by notching through via-hole. The bonding strength of the lateral bonding is over 30 Mpa as evaluated under shear and the hermeticity of the encapsulation is 2.0$\times10^{-9}$mbar.$l$/sec as examined by pressurized Helium leak rate. Results show that the new scheme is feasible and could be an alternative method for high yield wafer level packaging.

  • PDF

Investigation of smart multifunctional optical sensor platform and its application in optical sensor networks

  • Pang, C.;Yu, M.;Gupta, A.K.;Bryden, K.M.
    • Smart Structures and Systems
    • /
    • 제12권1호
    • /
    • pp.23-39
    • /
    • 2013
  • In this article, a smart multifunctional optical system-on-a-chip (SOC) sensor platform is presented and its application for fiber Bragg grating (FBG) sensor interrogation in optical sensor networks is investigated. The smart SOC sensor platform consists of a superluminescent diode as a broadband source, a tunable microelectromechanical system (MEMS) based Fabry-P$\acute{e}$rot filter, photodetectors, and an integrated microcontroller for data acquisition, processing, and communication. Integrated with a wireless sensor network (WSN) module in a compact package, a smart optical sensor node is developed. The smart multifunctional sensor platform has the capability of interrogating different types of optical fiber sensors, including Fabry-P$\acute{e}$rot sensors and Bragg grating sensors. As a case study, the smart optical sensor platform is demonstrated to interrogate multiplexed FBG strain sensors. A time domain signal processing method is used to obtain the Bragg wavelength shift of two FBG strain sensors through sweeping the MEMS tunable Fabry-P$\acute{e}$rot filter. A tuning range of 46 nm and a tuning speed of 10 Hz are achieved. The smart optical sensor platform will open doors to many applications that require high performance optical WSNs.

Wafer-Level Packaged MEMS Resonators with a Highly Vacuum-Sensitive Quality Factor

  • Kang, Seok Jin;Moon, Young Soon;Son, Won Ho;Choi, Sie Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권5호
    • /
    • pp.632-639
    • /
    • 2014
  • Mechanical stress and the vacuum level are the two main factors dominating the quality factor of a resonator operated in the vacuum range 1 mTorr to 10 Torr. This means that if the quality factor of a resonator is very insensitive to the mechanical stress in the vacuum range, it is sensitive to mainly the ambient vacuum level. In this paper, a wafer-level packaged MEMS resonator with a highly vacuum-sensitive quality factor is presented. The proposed device is characterized by a package with out-of-plane symmetry and a suspending structure with only a single anchor. Out-of-plane symmetry helps prevent deformation of the packaged device due to thermal mismatch, and a single-clamped structure facilitates constraint-free displacement. As a result, the proposed device is very insensitive to mechanical stress and is sensitive to mainly the ambient vacuum level. The average quality factors of the devices packaged under pressures of 50, 100, and 200 mTorr were 4987, 3415, and 2127, respectively. The results demonstrated the high controllability of the quality factor by vacuum adjustment. The mechanical robustness of the quality factor was confirmed by comparing the quality factors before and after high-temperature storage. Furthermore, through more than 50 days of monitoring, the stability of the quality factor was also certified.