• 제목/요약/키워드: MALDI-TOF/MS

검색결과 280건 처리시간 0.032초

쌀겨 추출물로부터 스핑고당지질의 분리와 구조결정 (Isolation and Characterization of Major Glycosphingolipid from Rice Bran Extract)

  • ;;강병원
    • Applied Biological Chemistry
    • /
    • 제50권1호
    • /
    • pp.72-76
    • /
    • 2007
  • 대표적인 스핑고지질인 글리코실세라미드의 생리적 기능을 조사하기 위하여 쌀겨 추출물로부터 cerebroside를 분리하였다. 정제하지 않은 글리코실세라미드를 flash system 칼럼으로 분리한 후 ELSD를 검출기로 사용하여 순상 HPLC로 정제하였다. 클로로포름 : 메탄올 : 증류수(99:11:1, v/v/v)을 용출용매로 사용하여 주요 cerebroside를 얻을 수 있었고, MALDI/TOF-MS, FAB-MS, GC, 600MHz $^1$H-NMR로 구조를 분석하였다. 구성당은 글루코오스였고 cerebroside의 구성 지방산은 2-hydroxy-arachidic산이었다. 장쇄 염기는 sphinga-4,8-dienine이었다.

Postharvest Biological Control of Colletotrichum acutatum on Apple by Bacillus subtilis HM1 and the Structural Identification of Antagonists

  • Kim, Hae-Min;Lee, Kui-Jae;Chae, Jong-Chan
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권11호
    • /
    • pp.1954-1959
    • /
    • 2015
  • Bacillus subtilis HM1 was isolated from the rhizosphere region of halophytes for its antifungal activity against Colletotrichum acutatum, the causative agent of anthracnose. Treatment of postharvest apples with the cell culture or with a cell-free culture supernatant reduced disease severity 80.7% and 69.4%, respectively. Both treatments also exhibited antifungal activity against various phytopathogenic fungi in vitro. The antifungal substances were purified and analyzed by acid precipitation, gel filtration, high-performance liquid chromatography, and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Three compounds were identified as fengycin, iturin, and surfactin. The MALDI-TOF/TOF mass spectrum revealed the presence of cyclized fengycin homologs A and B, which were distinguishable on the basis of the presence of either alanine or valine, respectively, at position 6 of the peptide sequence. In addition, the cyclized structure of fengycin was shown to play a critical role in antifungal activity.

Mass-Spectral Identification of an Extracellular Protease from Bacillus subtilis KCCM 10257, a Producer of Antibacterial Peptide Subtilein

  • SONG HYUK-HWAN;GIL MI-JUNG;LEE CHAN
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권5호
    • /
    • pp.1054-1059
    • /
    • 2005
  • An extracellular protease was identified from Bacillus subtilis KCCM 10257 by N-terminal sequencing and mass spectral analysis. The molecular mass of the extracellular protease was estimated to be 28 kDa by SDS-PAGE. Sequencing of the N-terminal of the protease revealed the sequence of A(G,S,R)QXVPYG(A)V(P,L)SQ. The N-terminal sequence exhibited close similarity to the sequence of other proteases from Bacillus sp. A mass list of the monoisotopic peaks in the MALDI-TOF spectrum was searched after peptide fragmentation of the protease. Six peptide sequences exhibiting monoisotopic masses of 1,276.61, 1,513.67, 1,652.81, 1,661.83, 1,252.61, and 1,033.46 were observed from the fragmented protease. These monisotopic masses corresponded to the lytic enzyme L27 from Bacillus subtilis 168, and the Mowse score was found to be 75. A doubly charged Top product (MS) at a m/z of 517.3 exhibiting a molecular mass of 1034.6 was further analyzed by de novo sequencing using a PE Sciex QSTAR Hybrid Quadropole-TOF (MS/MS) mass spectrometer. MS/MS spectra of the Top product (MS) at a m/z of 517.3 obtained from the fragmented peptide mixture of protease with Q-star contained the b-ion series of 114.2, 171.2, 286.2, 357.2, 504.2, 667.4, 830.1, and 887.1 and y-ion series of 147.5, 204.2, 367.2, 530.3, 677.4, 748.4, 863.4, and 920.5. The sequence of analyzed peptide ion was identified as LGDAFYYG from the b- and y-ion series by de novo sequencing and corresponded to the results from the MALDI-TOF spectrum. From these results the extracellular protease from Bacillus subtilis KCCM 10257 was successfully identified with the lytic enzyme L27 from Bacillus subtilis 168.

LPS로 자극된 macrophage RAW264.7 세포에서 ascochlorin에 대한 단백질체 분석 (Proteome Analysis of Responses to Ascochlorin in LPS-induced Mouse Macrophage RAW264.7 Cells by 2-D Gel Electrophoresis and MALDI-TOF MS.)

  • 장영채
    • 생명과학회지
    • /
    • 제18권6호
    • /
    • pp.814-825
    • /
    • 2008
  • 아스코크로린(Ascochlorin, ASC)은 Ascochyta viciae로부터 추출된 프레닐페놀 물질로, 혈청 콜레스테롤과 트리글리세라이드 수치를 감소시키고 종양 성장을 억제한다는 연구 결과가 보고되어 있다. 본 논문에서는 아스코크로린이 생리학적 혹은 병리학적인 작용과 염증반응에서 약리학적으로 유도되는 반응을 어떻게 조절하며, 이러한 메커니즘에 대해 이해하기 위해 mouse macrophage Raw264.7 세포에 아스코크로린을 처리하여 이에 대한 프로테옴의 특이적인 발현에 대해 분석하였다. 따라서 본 연구는 LPS를 처리한 mouse macrophage Raw264.7 세포에 아스코크로린을 처리하여 염증과정에 관련된 단백질의 발현 양상을 확인하기 위해 프로테오믹스를 시행하였다. Mouse macrophage RAW264.7 세포에 아스코크로린을 처리한 조건과 무처리한 조건으로 나누어 two-dimensional electrophoresis (2-D SDS-PAGE), matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF-MS)와 bioinformatics 방법으로 아스코크로린을 처리한 mouse macrophage Raw264.6 세포의 프로테옴을 분석하였다. 그 결과 mouse macrophage Raw264.7 세포에 아스코크로린 처리 시 Calreticulin이 4배 감소, ${\beta}-actin$도 4배 감소 그리고 vimentin이 1.5배 감소함을 확인 할 수 있었다. 그러나 rabaptin 아스코크로린 처리에 의해 3배 증가함을 확인 할 수 있었다. 이러한 단백질 발현은 RT-PCR을 수행하여 결과에 대해 재확인 하였으며, 프로테오믹스와 동일한 결과를 얻을 수 있었다. 따라서 본 연구를 통해 LPS 처리에 의해 활성화된 mouse macrophage RAW264.7 세포에 ASC를 처리한 후 이차원 전기영동법을 이용하여, 단백질의 발현 변화 및 양상을 규명하고 단백질 지도를 확립 하였으며, RAW264.7 세포를 이용한 면역세포 모델에서 ASC의 항염증 작용을 중심으로 생리활성 조절기능을 확인 할 수 있었다. 향후 분자 기능 조절 연구와 전 임상 연구를 통해 ASC의 생리활성 조절 기능을 규명한다면 ASC는 항염증 및 항암활성을 갖는 약물로 개발될 것으로 기대된다.

Highly Dispersed CuO Nanoparticles on SBA-16 Type Mesoporous Silica with Cyclam SBA-16 as a Precursor

  • Prasetyanto, Eko Adi;Sujandi, Sujandi;Lee, Seung-Cheol;Park, Sang-Eon
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권12호
    • /
    • pp.2359-2362
    • /
    • 2007
  • MALDI-TOF-MS technique was applied to obtain structural and compositional information of synthetic polyamides, Nylon6 and Nylon66. Mass spectra of both the original and the hydrolyzed polyamide samples were analyzed using the self calibration method as well as the internal calibration method with the standard materials of known masses. The MALDI-TOF mass spectra of Nylon6 samples showed the presence of protonated, sodiated, and potassiated ions that were assigned to cyclic and NH2/COOH terminated linear oligomers. From the MALDI-TOF mass spectra of Nylon66 samples, the potassiated linear oligomers with three different end groups are identified as well as the cyclic oligomers, i.e., NH2/COOH terminated oligomers, NH2/NH2 terminated oligomers, and COOH/COOH terminated oligomers. Full characterization of the molecular species and end groups present in the polyamide samples has been achieved, and also the changes in mass spectral patterns after the hydrolysis of the samples are presented.

Characterization of Yeast and Bacterial Type Strains with Food and Agricultural Applications by MALDI-TOF Mass Spectrometry Biotyping

  • Harnpicharnchai, Piyanun;Jaresitthikunchai, Janthima;Seesang, Mintra;Jindamorakot, Sasitorn;Tanapongpipat, Sutipa;Ingsriswang, Supawadee
    • 한국미생물·생명공학회지
    • /
    • 제48권2호
    • /
    • pp.138-147
    • /
    • 2020
  • Various microorganisms play important roles in food fermentation, food spoilage, and agriculture. In this study, the biotype of 54 yeast and bacterial strains having high potential for utilization in food and agriculture, including Candida spp., Lactobacillus spp., and Acetobacter spp., were characterized by matrix-assisted laser desorption/ionization time-of flight mass spectrometry (MALDI-TOF MS). This characterization using a fast and robust method provides much-needed information on the selected microorganisms and will facilitate effective usage of these strains in various applications. Importantly, the unique protein profile of each microbial species obtained from this study was used to create a database of fingerprints from these species. The database was validated using microbial strains of the same species by comparing the mass spectra with the created database through pattern matching. The created reference database provides crucial information and is useful for further utilization of a large number of valuable microorganisms relevant to food and agriculture.

Identification of Protein Markers Specific for Papillary Renal Cell Carcinoma Using Imaging Mass Spectrometry

  • Na, Chan Hyun;Hong, Ji Hye;Kim, Wan Sup;Shanta, Selina Rahman;Bang, Joo Yong;Park, Dongmin;Kim, Hark Kyun;Kim, Kwang Pyo
    • Molecules and Cells
    • /
    • 제38권7호
    • /
    • pp.624-629
    • /
    • 2015
  • Since the emergence of proteomics methods, many proteins specific for renal cell carcinoma (RCC) have been identified. Despite their usefulness for the specific diagnosis of RCC, such proteins do not provide spatial information on the diseased tissue. Therefore, the identification of cancer-specific proteins that include information on their specific location is needed. Recently, matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) based imaging mass spectrometry (IMS) has emerged as a new tool for the analysis of spatial distribution as well as identification of either proteins or small molecules in tissues. In this report, surgical tissue sections of papillary RCC were analyzed using MALDI-IMS. Statistical analysis revealed several discriminative cancer-specific m/z-species between normal and diseased tissues. Among these m/z-species, two particular proteins, S100A11 and ferritin light chain, which are specific for papillary RCC cancer regions, were successfully identified using LC-MS/MS following protein extraction from independent RCC samples. The expressions of S100A11 and ferritin light chain were further validated by immunohistochemistry of human tissues and tissue microarrays (TMAs) of RCC. In conclusion, MALDI-IMS followed by LC-MS/MS analysis in human tissue identified that S100A11 and ferritin light chain are differentially expressed proteins in papillary RCC cancer regions.

Iron Starvation-Induced Proteomic Changes in Anabaena (Nostoc) sp. PCC 7120: Exploring Survival Strategy

  • Narayan, Om Prakash;Kumari, Nidhi;Rai, Lal Chand
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권2호
    • /
    • pp.136-146
    • /
    • 2011
  • This study provides first-hand proteomic data on the survival strategy of Anabaena sp. PCC 7120 when subjected to long-term iron-starvation conditions. 2D-gel electrophoresis followed by MALDI-TOF/MS analysis of iron-deficient Anabaena revealed significant and reproducible alterations in ten proteins, of which six are associated with photosynthesis and respiration, three with the antioxidative defense system, and the last, hypothetical protein all1861, conceivably connected with iron homeostasis. Iron-starved Anabaena registered a reduction in growth, photosynthetic pigments, PSI, PSII, whole-chain electron transport, carbon and nitrogen fixation, and ATP and NADPH content. The kinetics of hypothetical protein all1861 expression, with no change in expression until day 3, maximum expression on the $7^{th}$ day, and a decline in expression from the $15^{th}$ day onward, coupled with in silico analysis, suggested its role in iron sequestration and homeostasis. Interestingly, the up-regulated FBP-aldolase, Mn/Fe-SOD, and all1861 all appear to assist the survival of Anabeana subjected to iron-starvation conditions. Furthermore, the $N_2$-fixation capabilities of the iron-starved Anabaena encourage us to recommend its application as a biofertilizer, particularly in iron-limited paddy soils.

Effect of Dihydroxybenzoic Acid Isomers on the Analysis of Polyethylene Glycols in MALDI-MS

  • Lee, Ae-Ra;Yang, Hyo-Jik;Kim, Yang-Sun;Kim, Jeong-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권5호
    • /
    • pp.1127-1130
    • /
    • 2009
  • The effects of different dihydroxybenzoic acid (DHB) isomers, when used as matrix materials in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), were investigated in analyses of polyethylene glycol (PEG) polymers. PEG polymers ranging from 400 to 8,000 Da were prepared in different DHB isomer matrices using solvent-based and solvent-free methods. PEG samples were detected only in matrices of 2,3-DHB, 2,5-DHB, and 2,6-DHB while the most intense peaks were observed using 2,6-DHB in both solvent-free and solvent-based preparations.

Endophytic Bacillus sp. CY22 from a Balloon Flower (Platycodon grandiflorum) Produces Surfactin Isoforms

  • Cho, Soo-Jeong;Hong, Su-Young;Kim, Jin-Young;Park, Sang-Ryeol;Kim, Min-Keun;Lim, Woo-Jin;Shin, Eun-Chule;Kim, Eun-Ju;Cho, Yong-Un;Yun, Han-Dae
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권6호
    • /
    • pp.859-865
    • /
    • 2003
  • Surfactin is a mixture of cyclic lipopeptides built from variants of a heptapeptide and a ${\beta}-hydroxy$ fatty acid produced by several strains of Bacillus sp. Surfactin isoforms produced by endophytic Bacillus sp. CY22 from a balloon flower were isolated and characterized. It was found that the purified surfactin had three isoforms with protonated masses of m/z 1,008, 1,022, and 1,036, and different structures in combination with Na, K, Ca ions using MALDI-TOF MS, ESI-MS/MS, and ICP MS, respectively. In the MS/MS analysis, the isolated surfactin had the identical amino acid sequence (LLVDLL) and hydroxy fatty acids (with 13 to 15 carbons in length), even though isolated from different Bacillus strains. The sfp22 gene, required for producing the surfactin, consisted of an open reading frame (ORF) of 675 bp encoding 224 amino acid residues with a signal peptide of 20 amino acids. The predicted amino acid sequence of sfp22 was very similar to that of Ipa-8.