Browse > Article
http://dx.doi.org/10.4014/jmb.1507.07100

Postharvest Biological Control of Colletotrichum acutatum on Apple by Bacillus subtilis HM1 and the Structural Identification of Antagonists  

Kim, Hae-Min (Division of Biotechnology, Chonbuk National University)
Lee, Kui-Jae (Division of Biotechnology, Chonbuk National University)
Chae, Jong-Chan (Division of Biotechnology, Chonbuk National University)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.11, 2015 , pp. 1954-1959 More about this Journal
Abstract
Bacillus subtilis HM1 was isolated from the rhizosphere region of halophytes for its antifungal activity against Colletotrichum acutatum, the causative agent of anthracnose. Treatment of postharvest apples with the cell culture or with a cell-free culture supernatant reduced disease severity 80.7% and 69.4%, respectively. Both treatments also exhibited antifungal activity against various phytopathogenic fungi in vitro. The antifungal substances were purified and analyzed by acid precipitation, gel filtration, high-performance liquid chromatography, and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Three compounds were identified as fengycin, iturin, and surfactin. The MALDI-TOF/TOF mass spectrum revealed the presence of cyclized fengycin homologs A and B, which were distinguishable on the basis of the presence of either alanine or valine, respectively, at position 6 of the peptide sequence. In addition, the cyclized structure of fengycin was shown to play a critical role in antifungal activity.
Keywords
Antifungal lipopeptide; Bacillus subtilis; cyclized fengycin;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Akpa E, Jacques P, Wathelet B, Paquot M, Fuchs R, Budzikiewicz H, Thonart P. 2001. Influence of culture conditions on lipopeptide production by Bacillus subtilis. Appl. Biochem. Biotechnol. 91-93: 551-561.   DOI
2 Bie X, Lu Z, Lu F. 2009. Identification of fengycin homologues from Bacillus subtilis with ESI-MS/CID. J. Microbiol. Methods 79: 272-278.   DOI
3 Chen H, Wang L, Su CX, Gong GH, Wang P, Yu ZL. 2008. Isolation and characterization of lipopeptide antibiotics produced by Bacillus subtilis. Lett. Appl. Microbiol. 47: 180-186.   DOI
4 de Faria AF, Stéfani D, Vaz BG, Silva ÍS, Garcia JS, Eberlin MN, et al. 2011. Purification and structural characterization of fengycin homologues produced by Bacillus subtilis LSFM-05 grown on raw glycerol. J. Ind. Microbiol. Biotechnol. 38: 863-871.   DOI
5 Dunlap CA, Schisler DA, Price NP, Vaughn SF. 2011. Cyclic lipopeptide profile of three Bacillus subtilis strains; antagonists of Fusarium head blight. J. Microbiol. 49: 603-609.   DOI
6 Hu LB, Shi ZQ, Zhang T, Yang ZM. 2007. Fengycin antibiotics isolated from B-FS01 culture inhibit the growth of Fusarium moniliforme Sheldon ATCC 38932. FEMS Microbiol. Lett. 272: 91-98.   DOI
7 Maget-Dana R, Thimon L, Peypoux F, Ptak M. 1992. Surfactin/iturin A interactions may explain the synergistic effect of surfactin on the biological properties of iturin A. Biochimie 74: 1047-1051.   DOI
8 Ongena M, Jacques P, Touré Y, Destain J, Jabrane A, Thonart P. 2005. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl. Microbiol. Biotechnol. 69: 29-38.   DOI
9 Roongsawang N, Thaniyavarn J, Thaniyavarn S, Kameyama T, Haruki M, Imanaka T, et al. 2002. Isolation and characterization of a halotolerant Bacillus subtilis BBK-1 which produces three kinds of lipopeptides: bacillomycin L, plipastatin, and surfactin. Extremophiles 6: 499-506.   DOI
10 Pecci Y, Rivardo F, Martinotti MG, Allegrone G. 2010. LC/ESI-MS/MS characterisation of lipopeptide biosurfactants produced by the Bacillus licheniformis V9T14 strain. J. Mass Spectrom. 45: 772-778.   DOI
11 Persello-Cartieaux F, Nussaume L, Robaglia C. 2003. Tales from the underground: molecular plant–rhizobacteria interactions. Plant Cell Environ. 26: 189-199.   DOI
12 Raposo R, Gomez V, Urrutia T, Melgarejo P. 2000. Fitness of Botrytis cinerea associated with dicarboximide resistance. Phytopathology 90: 1246-1249.   DOI
13 Spadaro D, Vola R, Piano S, Gullino ML. 2002. Mechanisms of action and efficacy of four isolates of the yeast Metschnikowia pulcherrima active against postharvest pathogens on apples. Postharvest Biol. Technol. 24: 123-134.   DOI
14 Touré Y, Ongena M, Jacques P, Guiro A, Thonart P. 2004. Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J. Appl. Microbiol. 96: 1151-1160.   DOI
15 Vater J, Kablitz B, Wilde C, Franke P, Mehta N, Cameotra SS. 2002. Matrix-assisted laser desorption ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl. Environ. Microbiol. 68: 6210-6219.   DOI
16 Vollenbroich D, Pauli G, Ozel M, Vater J. 1997. Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Appl. Environ. Microbiol. 63: 44-49.
17 Whipps JM. 2001. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52: 487-511.   DOI
18 Yoshida S, Hiradate S, Tsukamoto T, Hatakeda K, Shirata A. 2001. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology 91: 181-187.   DOI
19 Williams BH, Hathout Y, Fenselau C. 2002. Structural characterization of lipopeptide biomarkers isolated from Bacillus globigii. J. Mass Spectrom. 37: 259-264.   DOI