Browse > Article
http://dx.doi.org/10.4014/mbl.1910.10008

Characterization of Yeast and Bacterial Type Strains with Food and Agricultural Applications by MALDI-TOF Mass Spectrometry Biotyping  

Harnpicharnchai, Piyanun (National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency)
Jaresitthikunchai, Janthima (National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency)
Seesang, Mintra (National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency)
Jindamorakot, Sasitorn (National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency)
Tanapongpipat, Sutipa (National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency)
Ingsriswang, Supawadee (National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency)
Publication Information
Microbiology and Biotechnology Letters / v.48, no.2, 2020 , pp. 138-147 More about this Journal
Abstract
Various microorganisms play important roles in food fermentation, food spoilage, and agriculture. In this study, the biotype of 54 yeast and bacterial strains having high potential for utilization in food and agriculture, including Candida spp., Lactobacillus spp., and Acetobacter spp., were characterized by matrix-assisted laser desorption/ionization time-of flight mass spectrometry (MALDI-TOF MS). This characterization using a fast and robust method provides much-needed information on the selected microorganisms and will facilitate effective usage of these strains in various applications. Importantly, the unique protein profile of each microbial species obtained from this study was used to create a database of fingerprints from these species. The database was validated using microbial strains of the same species by comparing the mass spectra with the created database through pattern matching. The created reference database provides crucial information and is useful for further utilization of a large number of valuable microorganisms relevant to food and agriculture.
Keywords
MALDI-TOF Mass Spectrometry; food; agriculture; biotyping; microorganisms;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Normand A, Cassagne C, Gautier M, Becker P, Ranque S, Hendrickx M, et al. 2017. Decision criteria for MALDI-TOF MS-based identification of filamentous fungi using commercial and in-house reference databases. BMC Microbiol. 17: 25.   DOI
2 Rezac S, Kok, CR, Heermann M, Hutkins, R. 2018. Fermented foods as a dietary source of live organisms. Front. Microbiol. 9: 1785.   DOI
3 Calderaro A, Arcangeletti MC, Rodighiero I, Buttrini M, Gorrini C, Motta F, et al. 2014. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry applied to virus identification. Sci. Rep. 4: 6803.   DOI
4 Gekenidis M, Studer P, Wüthrich S, Brunisholz R, Drissner D. 2014. Beyond the matrix-assisted laser desorption ionization (MALDI) biotyping workflow: In search of microorganism-specific tryptic peptides enabling discrimination of subspecies. Appl. Environ. Microbiol. 80: 4234-4241.   DOI
5 Juodeikiene G, Bartkiene E, Pranas V, Urbonaviciene D, Eidukonyte D, Bobinas V. 2012. Fermentation processes using lactic acid bacteria producing bacteriocins for preservation and improving functional properties of food products. In Marian Petre (ed.), Adv. Appl. Biotechnol. Available from: https://www.intechopen.com/books/advances-in-applied-biotechnology/fermentation-processes-using-lactic-acid-bacteria-producing-bacteriocins-for-preservation-and-improv.
6 Ritchie ML, Romanuk TN 2012. A meta-analysis of probiotic efficacy for gastrointestinal diseases. PLoS One 7: e34938.   DOI
7 Lopitz-Otsoa F, Rementeria A, Elguezabal N, Garaizar J. 2006. Kefir: a symbiotic yeasts-bacteria community with alleged healthy capabilities. Rev. Iberoam Micol. 23: 67-74.   DOI
8 Singhal N, Kumar M, Kanaujia PK, Virdi JS. 2015. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front. Microbiol. 6: 791.
9 Angeletti, S. 2017. Matrix assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS) in clinical microbiology. J. Microbiol. Methods. 138: 20-29.   DOI
10 Moothoo-Padayachie A, Kandappa HR, Krishna SBN, Maier T, Govender P. 2013. Biotyping Saccharomyces cerevisiae strains using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) Eur. Food Res. Technol. 236: 351-364.   DOI
11 Pavlovic M, Huber I, Konrad R, Busch U. 2014. Application of MALDI-TOF MS for the identification of food borne bacteria. Open Microbiol. J. 7: 135-141.   DOI
12 Ingsriswang S, Pacharawongsakda E. 2007. sMOL Explorer: an open source, web-enabled database and exploration tool for Small MOLecules datasets. Bioinformatics 23: 2498-2500.   DOI
13 Bizzini A, Greub G. 2010 Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolution in clinical microbial identification. Clin. Microbiol. Infect. 16: 1614-1619.   DOI
14 Sun L, Teramoto K, Sato H, Torimura M, Tao H, Shintani T. 2006. Characterization of ribosomal proteins as biomarkers for matrix-assisted laser desorption/ionization mass spectral identification of Lactobacillus plantarum. Rapid Commun. Mass Spectrom. 20: 3789-3798.   DOI
15 Laroche M, Almeras L, Pecchi E, Bechah Y, Raoult D, Viola A, et al. 2017. MALDI-TOF MS as an innovative tool for detection of Plasmodium parasites in Anopheles mosquitoes. Malar J. 16(1): 5. doi: 10.1186/s12936-016-1657-z.
16 Patel, R. 2015. MALDI-TOF MS for the diagnosis of infectious diseases. Clin. Chem. 61: 100-111.   DOI
17 van Veen SQ, Claas ECJ, Kuijper EJ. 2010. High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J. Clin. Microbiol. 48: 900-907.   DOI
18 Seng P, Rolain JM, Fournier PE, La Scol, B, Drancourt M, Raoult D. 2010. MALDI-TOF-mass spectrometry applications in clinical microbiology. Future Microbiol. 5: 1733-1754.   DOI
19 Dhiman N, Hall L, Wohlfiel SL, Buckwalter SP, Wengenack NL. 2011. Performance and cost analysis of matrix-assisted laser desorption ionization-time of flight mass spectrometry for routine identification of yeast. J. Clin. Microbiol. 49: 1614-1616.   DOI
20 Dridi B, Raoult D, Drancourt M. 2012. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification of Archaea: towards the universal identification of living organisms. APMIS 120: 85-91.   DOI
21 Fenselau C, Demirev PA. 2001. Characterization of intact microorganisms by MALDI mass spectrometry. Mass. Spectrom. Rev. 20: 157-171.   DOI
22 Lay JO, Jr. 2001. MALDI-TOF mass spectrometry of bacteria. Mass Spectrom. Rev. 20: 172-194.   DOI
23 Croxatto A, Prod'hom G, Greub G. 2011. Applications of MALDITOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol. Rev. 36: 380-407.   DOI
24 Rahi P, Prakash O, Shouch YS. 2016. Matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (MALDI-TOF MS) based microbial identifications: Challenges and scopes for microbial ecologists. Front Microbiol. 7: 1359.
25 Mellmann A, Cloud J, Maier T, Keckevoet U, Ramminger I, Iwen P. 2008. Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria. J. Clin. Microbiol. 46: 1946-1954.   DOI