Browse > Article

Mass-Spectral Identification of an Extracellular Protease from Bacillus subtilis KCCM 10257, a Producer of Antibacterial Peptide Subtilein  

SONG HYUK-HWAN (Department of Food Science and Technology, BET Research Institute, Chung-Ang University)
GIL MI-JUNG (Department of Food Science and Technology, BET Research Institute, Chung-Ang University)
LEE CHAN (Department of Food Science and Technology, BET Research Institute, Chung-Ang University)
Publication Information
Journal of Microbiology and Biotechnology / v.15, no.5, 2005 , pp. 1054-1059 More about this Journal
Abstract
An extracellular protease was identified from Bacillus subtilis KCCM 10257 by N-terminal sequencing and mass spectral analysis. The molecular mass of the extracellular protease was estimated to be 28 kDa by SDS-PAGE. Sequencing of the N-terminal of the protease revealed the sequence of A(G,S,R)QXVPYG(A)V(P,L)SQ. The N-terminal sequence exhibited close similarity to the sequence of other proteases from Bacillus sp. A mass list of the monoisotopic peaks in the MALDI-TOF spectrum was searched after peptide fragmentation of the protease. Six peptide sequences exhibiting monoisotopic masses of 1,276.61, 1,513.67, 1,652.81, 1,661.83, 1,252.61, and 1,033.46 were observed from the fragmented protease. These monisotopic masses corresponded to the lytic enzyme L27 from Bacillus subtilis 168, and the Mowse score was found to be 75. A doubly charged Top product (MS) at a m/z of 517.3 exhibiting a molecular mass of 1034.6 was further analyzed by de novo sequencing using a PE Sciex QSTAR Hybrid Quadropole-TOF (MS/MS) mass spectrometer. MS/MS spectra of the Top product (MS) at a m/z of 517.3 obtained from the fragmented peptide mixture of protease with Q-star contained the b-ion series of 114.2, 171.2, 286.2, 357.2, 504.2, 667.4, 830.1, and 887.1 and y-ion series of 147.5, 204.2, 367.2, 530.3, 677.4, 748.4, 863.4, and 920.5. The sequence of analyzed peptide ion was identified as LGDAFYYG from the b- and y-ion series by de novo sequencing and corresponded to the results from the MALDI-TOF spectrum. From these results the extracellular protease from Bacillus subtilis KCCM 10257 was successfully identified with the lytic enzyme L27 from Bacillus subtilis 168.
Keywords
Extracellular protease; Bacillus subtilis KCCM 10257; mass-spectral identification;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Aunstrup, K., H. Outtrup, O. Andersen, and C. Dambmann. 1972. Proteases from alkalophilic Bacillus species. Proceedings of the Fourth International Fermentation Symposium. Society of Fermentation Technology. Kyoto. Japan, pp. 209-305
2 Durham, D. R., D. B. Stewart, and E. J. Stellwag. 1987. Novel alkaline and heat-stable serine proteases from alkalophilic Bacillus sp. strain GX6638. J. Bacteriol. 169: 2762-2768   DOI
3 Jang, J. S., D. O. Kang, K. S. Park, and S. M. Byun. 1993. Purification and characterization of recombinant Bacillus stearothermophilus subtilisin. J. Kor. Biochem. 26: 595-601
4 Kwon, Y. T., S. Y. Moon, J. O. Kim, Y. H. Kho, and H. M. Rho. 1992. Characterization of extracellular proteases from alkalophilic Vibrio sp. strain RH530. Kor. J. Microbiol. 30: 501-506
5 Lee, S. H., J. M. Kim, Y. T. Kwon, Y. H. Kho, and H. M. Rho. 1992. Cloning, sequencing and expression of an extracellular protease gene from Serratia marcescens RH1 in Escherichia coli. Kor. J. Microbiol. 30: 507-513
6 Markland, F. S. and E. L. Smith. 1967. Subtilisin BPN'. VII. Isolation of cyanogen bromide peptides and the complete amino acid sequence. J. Biol. Chem. 242: 5198-5211
7 Moon, S. Y., T. K. Oh, and H. M. Rho. 1994. Purification and characterization of an extracellular alkaline protease from Bacillus subtilis RM 615. Kor. Biochem. 27: 323-329
8 Vasantha, N., L. D. Thompson, C. Rhodes, C. Banner, J. Nagle, and D. Filpula. 1984. Genes for alkaline protease and neutral protease from Bacillus amyloliquefaciens contain a large open reading frame between the regions coding for signal sequence and mature protein. J. Bacteriol. 159: 811-819
9 Wells, J. A., E. Ferrari, D. J. Henner, D. A. Estell, and E. Y. Chen. 1983. Cloning, sequencing, and secretion of Bacillus amyloliquefciens subtilisin in Bacillus subtilis. Nucleic Acids Res. 11: 7911-7925   DOI   ScienceOn
10 Yang, J. K., I. L. Shilh, Y. M. Tzeng, and S. L. Wang. 2000. Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes. Enzyme Microbiol. Tech. 26: 406-413   DOI   PUBMED   ScienceOn
11 Yang, M. Y., E. Ferrari, and D. J. Hemmer. 1984. Cloning of the neutral protease gene of Bacillus subtilis and the use of the cloned gene to create an in vitro-derived deletion mutation. J. Bacteriol. 160: 15-21
12 Narida, K. 1979. pp. 212-221. In: Biochemistry Databook. Kagakidoujin. Tokyo
13 Holt, J. G., N. R. Krieg, P. H. A. Sneath, J. T. Staley, and S. T. Williams. 1994. Bergey's Manual of Determinative Bacteriology, 9th Ed. Williams and Wilkins, Baltimore, U.S.A
14 Jadwiga, K. S. 1997. Purification and partial characterization of a neutral protease from a virulent strain of Bacillus cereus. Int. J. Biochem. Cell Biol. 30: 579-595   DOI   PUBMED   ScienceOn
15 Nedkov, P., W. Oberthur, G. Baunitzer, and Z. Hoppe-Seyler's. 1983. Primary structure of subtilisin DY. Physiol. Chem. 364: 1537-1540   DOI
16 Fukushima, J., S. Yamamoto, K. Morihara, Y. Atsumi, H. Takeuchi, S. Kawamoto, and K. Okuda. 1989. Structural gene and complete amino acid sequence of Pseudomonas aeruginosa IFO 3455 elastase. J. Bacteriol. 171: 1698-1704   DOI
17 Choli, T., U. Kapp, and L. B. Wittmann. 1989. Blotting of proteins onto immobilon membranes. In situ characterization and comparison with high-performance liquid chromatography. J. Chromatogr. 476: 59-72   DOI   ScienceOn
18 Horikoshi, K. and T. Akiba. 1982. Alkalophilic Microorganisms. A New Microbial World. Springer-Verlag, New York, U.S.A
19 Priest, F. G. 1977. Extracellular enzyme synthesis in the genus Bacillus. Bacteriol. Rev. 41: 711- 753
20 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685   DOI   PUBMED   ScienceOn
21 Sloma, A., A. Ally, D. Allay, and J. Pero. 1998. Gene encoding a minor extracellular protease in B. subtilis. J. Bacteriol. 170: 5557-5563
22 Stahl, M. L. and E. Ferrari. 1984. Replacement of the Bacillus subtilis subtilisin structural gene with an in vitro-derived deletion mutation. J. Bacteriol. 158: 411-418
23 Takagi, M., T. Imanaka, and S. Aida. 1985. Nucleotide sequence and promoter region for the neutral protease gene from Bacillus stearothermophilus. J. Bacteriol. 163: 824-831
24 Lee, M. H., J. J. Song, Y H. Choi, S. P. Hong, E. Rha, H. K. Kim, S. G. Lee, H. Poo, S. C. Lee, Y B. Seu, and M. H. Sung. 2003. High-level expression and secretion of Bacillus pumilus lipase B26 in Bacillus subtilis Chungkookjang. J. Microbiol. Biotechnol. 13: 892-896
25 Lin. X., C. Lee, E. S. Casale, and J. C. H. Shilh. 1992. Purification and characterization of a keratinase from a feather-degrading Bacillus licheniformis strain. Appl. Envir. Microbiol. 58: 3271-3275
26 Park, S. Y., Y. J. Yang, Y. B. Kim, J. H. Hong, and C. Lee. 2002. Characterization of subtile in, a bacteriocin from Bacillus suMlis CAU131 (KCCM 10257). J. Microbiol. Biotechnol. 12: 228-234
27 Paik, H. D., S. K. Lee, S. Heo, S. Y. Kim, H. H. Lee, and T. J. Kwon. 2004. Purification and characterization of the fibrinolytic enzyme produced by Bacillus subtilis KCK-7 from Chungkookjang. J. Microbiol. Biotechnol. 14: 829-835
28 Yang, M. J., S. H. Jung, E. S. Shin, J. Kim, H. D. Yun, S. L. Wong, and H. Kim. 2004. Expression of a Bacillus subtilis endoglucanase in protease-deficient Bacillus subtilis strains. J. Microbiol. Biotechnol. 14: 430-434
29 Nakahama, K., K. Yoshimura, R. Marumoto, K. Mosakazu, J. S. Lee, T. Hase, and H. Matsubara. 1986. Cloning and sequencing of serratia protease gene. Nucleic Acids Res. 14: 5843-5855   DOI   ScienceOn
30 Ottesen, M. and I. Sveden. 1970. Proteolytic enzymes. Methods Enzymol. 19: 199-215   DOI
31 Suh, H. J. and H. K. Lee. 2001. Characterization of a keratinolytic serine protease from Bacillus subtilis KS-1. J. Protein Chem. 20: 165-169   DOI   ScienceOn
32 Aunstrup, K. 1979. Production isolation and economics of extracellular enzymes. Appl. Biochem. Bioeng. 2: 27-68
33 Keay, L., P. W. Moser, and B. S. Wildi. 1970. Proteases of the genus Bacillus. II. Alkaline proteases. Biotech. Bioeng. 12: 213-249   DOI   ScienceOn