Browse > Article
http://dx.doi.org/10.4014/jmb.1009.09021

Iron Starvation-Induced Proteomic Changes in Anabaena (Nostoc) sp. PCC 7120: Exploring Survival Strategy  

Narayan, Om Prakash (Molecular Biology Section, Centre of Advanced Study in Botany, Banaras Hindu University)
Kumari, Nidhi (Molecular Biology Section, Centre of Advanced Study in Botany, Banaras Hindu University)
Rai, Lal Chand (Molecular Biology Section, Centre of Advanced Study in Botany, Banaras Hindu University)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.2, 2011 , pp. 136-146 More about this Journal
Abstract
This study provides first-hand proteomic data on the survival strategy of Anabaena sp. PCC 7120 when subjected to long-term iron-starvation conditions. 2D-gel electrophoresis followed by MALDI-TOF/MS analysis of iron-deficient Anabaena revealed significant and reproducible alterations in ten proteins, of which six are associated with photosynthesis and respiration, three with the antioxidative defense system, and the last, hypothetical protein all1861, conceivably connected with iron homeostasis. Iron-starved Anabaena registered a reduction in growth, photosynthetic pigments, PSI, PSII, whole-chain electron transport, carbon and nitrogen fixation, and ATP and NADPH content. The kinetics of hypothetical protein all1861 expression, with no change in expression until day 3, maximum expression on the $7^{th}$ day, and a decline in expression from the $15^{th}$ day onward, coupled with in silico analysis, suggested its role in iron sequestration and homeostasis. Interestingly, the up-regulated FBP-aldolase, Mn/Fe-SOD, and all1861 all appear to assist the survival of Anabeana subjected to iron-starvation conditions. Furthermore, the $N_2$-fixation capabilities of the iron-starved Anabaena encourage us to recommend its application as a biofertilizer, particularly in iron-limited paddy soils.
Keywords
LC-MS; MALDI-TOF/MS; reverse transcription PCR; two-dimensional gel electrophoresis;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Apte, S. K. A. and A. Bhagwat. 1989. Salinity stress induced proteins in two nitrogen fixing Anabaena strains differentially tolerant to salt. J. Bacteriol. 171: 909-915.   DOI
2 Bauer, C. C., L. Scappino, and R. Robert Haselkorn. 1993. Growth of the cyanobacterium Anabaena on molecular nitrogen: Nifj is required when iron is limited. Proc. Natl. Acad. Sci. USA 90: 8812-8816.   DOI   ScienceOn
3 Bhargava, P., Y. Mishra, A. K. Srivastava, O. P. Narayan, and L. C. Rai. 2008. Excess copper induces anoxygenic photosynthesis in Anabaena doliolum: A homology based proteomic assessment of its survival strategy. Photosynth. Res. 96: 61-74.   DOI   ScienceOn
4 Brody, S. S. and M. A. Brody. 1961. Quantitative assay for the number of chromophores on a chromoprotein: Its application to phycoerythrin and phycocyanin. Biochim. Biophys. Acta 50: 348-352.   DOI   ScienceOn
5 Cheng, Y., J. H. Li, L. Shi, L. Wang, A. Latifi, and C. C. Zhang. 2006. A pair of iron responsive genes encoding protein kinases with a Ser/Thr kinase domain and His kinase domain are regulated by NtcA in the cyanobacterium Anabaena sp. strain PCC 7120. J. Bacteriol. 188: 4822-4829.   DOI   ScienceOn
6 Allen, A. E., J. LaRoche, U. Maheswari, M. Lommer, N. Schauer, P. J. Lopez, G. Finazzi, A. R. Fernie, and C. Bowler. 2008. Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation. Proc. Natl Acad. Sci. USA 105: 10438-10443.   DOI   ScienceOn
7 Xu, W. L., R. Jeanjean, Y. D. Liu, and C. C. Zhang. 2003. pkn22 (alr 2502) encoding a putative Ser/Thr kinase in the cyanobacterium Anabaena sp. PCC 7120 is induced by both iron starvation and oxidative stress and regulates the expression of isiA. FEBS Lett. 553: 179-182.   DOI
8 Timperio, A. M., G. M. D'Amici, C. Barta, F. Loreto, and L. Zolla. 2007. Proteomics, pigment composition, and organization of thylakoid membranes in iron-deficient spinach leaves. J. Exp. Bot. 58: 3695-3710.   DOI   ScienceOn
9 Tripathy, B. C. and P. Mohanty. 1980. Zinc-inhibited electron transport of photosynthesis in isolated barley chloroplasts. Plant Physiol. 66: 1174-1178.   DOI   ScienceOn
10 Wagner, M. A., M. Eschenbrenner, T. A. Honrn, J. A. Kraycer, C. V. Mujer, S. Hagius, P. Elzer, and V. G. DelVecchio. 2002. Global analysis of the Brucella melitensis proteome: Identification of proteins expressed in laboratory grown culture. Proteomics 2: 1047-1060.   DOI   ScienceOn
11 Shcolnick, S., T. C. Summerfield, L. Reytman, L. A. Sherman, and N. Keren. 2009. The mechanism of iron homeostasis in the unicellular cyanobacterium Synechocystis sp. PCC 6803 and its relationship to oxidative stress. Plant Physiol. 150: 2045-2056.   DOI   ScienceOn
12 Singh, A. K., L. M. McIntyre, and L. A. Sherman. 2003. Microarray analysis of the genome-wide response to iron deficiency and iron reconstitution in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol. 132: 1825-1839.   DOI   ScienceOn
13 Stewart, W. D. P., G. P. Fitzgerald, and R. H. Burris. 1968. Acetylene reduction by nitrogen fixing blue-green algae. Arch. Microbiol. 62: 336-348.
14 Singh, A. K. and L. A. Sherman. 2000. Identification of ironresponsive, differential gene expression in the cyanobacterium Synechocystis sp. strain PCC 6803 with a customized amplification library. J. Bacteriol. 182: 3536-3543.   DOI   ScienceOn
15 Smyth, D. A. and W. M. Dugger. 1981. Cellular changes during iron deficient culture of the diatom Cylindrotheca fusiformis. Physiol. Plant 51: 111-117.   DOI
16 Srivastava, A. K., A. Ara, P. Bhargava. Y. Mishra, S. P. Rai, and L. C. Rai. 2007. A rapid and cost-effective method of genomic DNA isolation from cyanobacterial culture, mat and soil suitable for genomic fingerprinting and community analysis. J. Appl. Phycol. 19: 373-382.   DOI   ScienceOn
17 Straus, N. A. 1994. Iron deprivation: Physiology and gene regulation, pp. 731-750. In D. A. Bryant (ed.). The Molecular Biology of Cyanobacteria. Kluwer Academic Publishers, The Netherlands.
18 Rakkiyappan, P., S. Thangavelu, and R. Radhamani. 2002. Effect of ferrous sulphate on sugarcane varieties grown in iron deficient soil. Sugar Tech. 4: 33-37.   DOI
19 Rippka, R., J. Deruelles, J. B. Waterbury, M. Herdman, and R. Y. Stanier. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111: 1-6.   DOI
20 Regelsberger, G., U. Laaha, D. Dietmann, F. Rüker, A. Canini, M. Grilli-Caiola, et al. 2004. The iron superoxide dismutase from the filamentous cyanobacterium Nostoc PCC 7120: Localization, overexpression, and biochemical characterization. J. Biol. Chem. 279: 44384-44393.   DOI
21 Sandmann, G. and R. Malkin. 1983. Iron-sulfur centers and activities of the photosynthetic electron transport chain in iron deficient cultures of the blue-green alga Aphanocapsa. Plant Physiol. 73: 724-728.   DOI   ScienceOn
22 Sandmann, G., M. L. Peleato, M. F. Fillat, M. C. Lfizaro, and C. Gumez-Moreno. 1990. Consequences of the iron-dependent formation of ferredoxin and flavodoxin on photosynthesis and nitrogen fixation on Anabaena strains. Photosynth. Res. 26: 119-125.   DOI   ScienceOn
23 Sandstrom, S., A. G. Ivanovb, G. Parkc, Y-Il. Oquista, and P. Gustafssona. 2002. Iron stress responses in the cyanobacterium Synechococcus sp. PCC7942. Physiol. Plant 116: 255-263.   DOI   ScienceOn
24 Leonhardt, K. and N. A. Straus. 1994. Photosystem II genes isiA, psbDI and psbC, in Anabaena sp. PCC 7120: Cloning, sequencing and transcriptional regulation in iron stressed and iron repleted cells. Plant Mol. Biol. 24: 63-73.   DOI   ScienceOn
25 Mackinney, G. 1941. Absorption of light by chlorophyll solutions. J. Biol. Chem. 140: 315-322.
26 Myers, J. and W. A. Kratz. 1955. Relationship between pigment content and photosynthetic characteristics in a blue green alga. J. Gen. Physiol. 39: 11-21.   DOI   ScienceOn
27 Meng, F., Y. Wei, and X. Yang. Iron content and bioavailability in rice. 2005. J. Trace Elem. Med. Biol. 18: 333-338.   DOI   ScienceOn
28 Michel, K. P. and E. K. Pistorius. 2004. Adaptation of the photosynthetic electron transport chain in cyanobacteria to iron deficiency: The function of idiA and isiA. Physiol. Plant 120: 36-50.   DOI   ScienceOn
29 Mishra, Y., N. Chaurasia, and L. C. Rai. 2009. Heat pretreatment alleviates UV-B toxicity in the cyanobacterium Anabaena doliolum: A proteomic analysis of cross tolerance. Photochem. Photobiol. 85: 824-833.   DOI   ScienceOn
30 O'Farrell, P. H. 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250: 4007-4021.
31 Kupper, H., I. Setlik, S. Seibert, O. Prasil, E. Setlikova, M. Strittmatter, O. Levitan, J. L. Iwona Adamska, and I. Berman- Frank. 2008. Iron limitation in the marine cyanobacterium Trichodesmium reveals new insights into regulation of photosynthesis and nitrogen fixation. New Phytol. 179: 784-798.   DOI   ScienceOn
32 Larson, C. M. and T. Olsson. 1979. Firefly assay of adenine nucleotide from algae: Comparison of extraction methods. Plant Cell Physiol. 2: 145-155.
33 Latifi, A., R. Jeanjean, S. Lemeille, M. Havaux, and C. C. Zhang. 2005. Iron starvation leads to oxidative stress in Anabaena sp. strain PCC 7120. J. Bacteriol. 187: 6596-6598.   DOI   ScienceOn
34 Fausto da Silva, J. J. R. and R. J. P. Williams. 1994. 2001. The biological chemistry of the elements. In: The Inorganic Chemistry of Life, 2nd Ed. Oxford University Press, Oxford, United Kingdom.
35 Herranen, M., N. Battchikova, P. Zhang, A. Graf, S. Sirpiö, V. Paakkarinen, and E. M. Aro. 2004. Towards functional proteomics of membrane protein complexes in Synechocystis sp. PCC 6803. Plant Physiol. 134: 470-481.   DOI   ScienceOn
36 Ferreira, F. and N. A. Straus. 2003. Iron deprivation in cyanobacteria. J. Appl. Phycol. 6: 199-210.
37 Georgiou, G. and L. Masip. 2003. Biochemistry: An over oxidation journey with a return ticket. Science 300: 592-594.   DOI
38 Halliwell, B. and J. M. C. Gutteridge. 2006. Free Radicals in Biology and Medicine, 4th Ed. Clarendon Press, Oxford, United Kingdom.
39 Ivanov, A. G., M. Krol, E. Selstam, P. V. Sane, D. Sveshnikov, N. P. A. Park, Y-II. Oquist, and G. Huner. 2007. The induction of CP43 by iron-stress in Synechococcus sp. PCC 7942 is associated with carotenoid accumulation and enhanced fatty acid unsaturation. Biochim. Biophys. Acta 1767: 807-813.   DOI   ScienceOn