Browse > Article

Isolation and Characterization of Major Glycosphingolipid from Rice Bran Extract  

Mitsutake, Susumu (Department of Biomembrane and Biofunctional Chemistry, Graduate School of Pharmaceutical Science, Hokkaido University)
Okada, Tadashi (Oriza Oil & Fat Chemical Co.)
Kang, Byoung-Won (Department of Chemistry, Dong-eui University)
Publication Information
Applied Biological Chemistry / v.50, no.1, 2007 , pp. 72-76 More about this Journal
Abstract
In order to examine the biofunctions of glycosylceramide which is representative of sphingolipid, monoglycosylceramide (cerebroside) was isolated from rice bran extract. Crude glycosylceramides were isolated in large quantities and promptly by flash system column chromatography from rice bran extract, and purified by normal-phase HPLC using an evaporative light-scattering detector. One major cerebroside was obtained by HPLC used as an eluent consisting of chloroform, methanol and water (99:11:1, v/v/v), and the constituents were analyzed by MALDI/TOF-MS, FAB-MS, GC and 600 MHz $^1$H-NMR. The component sugar was estimated to be glucose. In the ceramide, the fatty acid component consist was 2-hydroxy arachidic acid. The long-chain base component was sphinga-4,8-dienine.
Keywords
sphingolipid; ceramide; edible plant; biofunction; cerebroside; rice bran extract;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Dickson, R. C. and Lester, R. L (2002) Sphingolipid functions in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1583, 13- 25   DOI
2 Okuyama, E., Hasegawa, T., Matsushita, T., Fujimoto, H., Ishibashi, M. and Yamazaki, M. (2001) Analgesic Components of Saposhnikovia Root (Saposhnikovia divaricata). Chem. Pharm. Bull. 49, 154-160   DOI   ScienceOn
3 Kashima, M., Nakagawa, K., Sugawara, T., Miyazawa, T., Murakami, C., Miyashita, R., Ono, J., Deschamps, F. S. and Chaminade, P. (2002) Method for Quantitative determination of cerebroside in 'plant ceramide' foodstuffs by high perfomance liquid chromatography with evaporative light scattering detection. J. Oleo Sci. 51, 347-354   DOI
4 Imokawa, G. (1995) Structure and function of intercellular lipids in the stratum corneum. J. Oleo Sci. 44, 51-66
5 Olsen, I. and Jantzen, E. (2001) Sphingolipids in bacteria and fungi. Anaerobe 7, 103-112   DOI   ScienceOn
6 Sastry, P. S. (1974) Glycosyl glycerides. Adv. Lipid Res. 12, 251-310
7 Vesper, H., Schmelz, E. M., Karakashian, N. N., Dillehay, D. L., Lynch, D. V. and Merrill, A. H. (1999) Sphingolipids in food and the emering importance of sphingolipids to nutrition. J. Nutr. 129, 1239-1250   DOI
8 Ohnishi, M., Kawase, S., Kondo, Y., Fujuno, Y. and Ito, S. (1996) Identification of major cerebrosidespecies in seven edible mushrooms. J. Jpn. Oil Chem. Soc. 45, 51-56   DOI
9 Yahagi, K. and Iwai, H. (1996) Application of surfactants in personal care products. J. Jpn. Oil Chem. Soc. 45, 1133-1143   DOI
10 Mano, Y., Kawaminami, K., Kojima, M. and Ohnishi, M. (1999) Comparative composition of brown rice lipids (lipid fractions) of India and Japonica rice. Biosci. Biotech. Biochem. 63, 619-626   DOI   ScienceOn
11 Kawai, G., Ohnishi, M., Fujino, Y. and Ikeda, Y. (1986) Stimulatory effect of certain plant sphingolipids on fruiting of Schizophyllum commune. J. Biol. Chem. 261, 779-784
12 Harwood, J. L. (1980) Plant acyl lipids; structure, distribution and analysis. In The biochemistry of plants, Conn, E. E. pp. 1- 55, Academic press, New York
13 Meer, G. and Holthuis, J. C. M. (2000) Sphingolipid transport in eukaryotic cells. Biochim. Biophys. Acta 1486, 145-170   DOI
14 Foulon, V. B., Godeau, G., Guessous, F., Lati, E., Rousset, G., Arveiller, M. R. and Hornebeck, W. (1995) Inhibition of human neutrophil elastase by wheat ceramides. Int. J. Cosmet. Sci. 17, 255-264   DOI   ScienceOn
15 Lomas, M. M. and Chapman, D. (1973) Structure studies on gylcolipids. patr 1: 220MHz NMR spectra of acetylated galactocerebrosides. Chem. Phys. Lipids 10, 152-164   DOI   ScienceOn
16 Carter, H. E., Hendry, R. A., Nojima, S., Stanacev, N. Z. and Ohno, K. (1961) Biochemistry of the sphingolipids. J. Biol. Chem. 236, 1912-1916
17 Karlsson, K. A., Pascher, I. Samuelsson, B.E. and Steen, G. O. (1972) Mass spectra of trimethylsilyl derivatives of homogeneous ceramides. Chem. Phys. lipids 9, 230-246   DOI   ScienceOn
18 Imai, H., Ohnishi, M., Kinoshita, M., Kojima, M. and Ito, S. (1995) Structure nad distribution of cerebroside containg unsaturated hydroxy fatty acids in plant leaves. Biosci. Biotech. Biochem. 59, 1309-1313   DOI
19 Hayashi, A. and Matsubara, T. (1971) Determination of the structure of sphinga-4,8-dienine from oyster gylcolipids by gas chromatography and mass spectrometry. Biochim. Biophys. Acta 248, 306-314   DOI
20 Sun, Y., Liu, Kai, Hua, H., Zhu, H. and Pei, Y. (2006) Gracilarioside and Gracilamides from red Alga Gracilaria asiatica. J. Nat. Prod. 69, 1488-1491   DOI   ScienceOn
21 Takakuwa, N., Tanji, M., Oda, Y. and Ohnishi, M. (2002) Distribution of 9-methyl sphingoid base in Mushrooms and its effects on the fluidity of phospholipid liposomes. J. Oleo Sci. 51, 741-747   DOI
22 Sperling, P. and Heinz, E. (2003) Plant sphingolipids: structure diversity, biosynthesis, first genes and functions. Biochim. Biophys. Acta 1632, 1-15   DOI
23 Sugawara, T. and Miyazaya, T. (1999) Separation and determination of glycolipids from edible plant sources by highperformance liquid chromatography and evaporative lightscattering detection. Lipids. 34, 1231-1237   DOI   ScienceOn