• Title/Summary/Keyword: M spaces

Search Result 817, Processing Time 0.024 seconds

ADDITIVE-QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN FUZZY BANACH SPACES

  • LEE, SUNG JIN;SEO, JEONG PIL
    • The Pure and Applied Mathematics
    • /
    • v.23 no.2
    • /
    • pp.163-179
    • /
    • 2016
  • Let $M_1f(x,y):=\frac{3}{4}f(x+y)-\frac{1}{4}f(-x-y)+\frac{1}{4}(x-y)+\frac{1}{4}f(y-x)-f(x)-f(y)$, $M_2f(x,y):=2f(\frac{x+y}{2})+f(\frac{x-y}{2})+f(\frac{y-x}{2})-f(x)-f(y)$ Using the direct method, we prove the Hyers-Ulam stability of the additive-quadratic ρ-functional inequalities (0.1) $N(M_1f(x,y)-{\rho}M_2f(x,y),t){\geq}\frac{t}{t+{\varphi}(x,y)}$ and (0.2) $N(M_2f(x,y)-{\rho}M_1f(x,y),t){\geq}\frac{t}{t+{\varphi}(x,y)}$ in fuzzy Banach spaces, where ρ is a fixed real number with ρ ≠ 1.

ON STABILITY OF A GENERALIZED QUADRATIC FUNCTIONAL EQUATION WITH n-VARIABLES AND m-COMBINATIONS IN QUASI-𝛽-NORMED SPACES

  • Koh, Heejeong;Lee, Yonghoon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.319-326
    • /
    • 2020
  • In this paper, we establish a general solution of the following functional equation $$mf\({\sum\limits_{k=1}^{n}}x_k\)+{\sum\limits_{t=1}^{m}}f\({\sum\limits_{k=1}^{n-i_t}}x_k-{\sum\limits_{k=n-i_t+1}^{n}}x_k\)=2{\sum\limits_{t=1}^{m}}\(f\({\sum\limits_{k=1}^{n-i_t}}x_k\)+f\({\sum\limits_{k=n-i_t+1}^{n}}x_k\)\)$$ where m, n, t, it ∈ ℕ such that 1 ≤ t ≤ m < n. Also, we study Hyers-Ulam-Rassias stability for the generalized quadratic functional equation with n-variables and m-combinations form in quasi-𝛽-normed spaces and then we investigate its application.

A SYSTEM OF NONLINEAR SET-VALUED IMPLICIT VARIATIONAL INCLUSIONS IN REAL BANACH SPACES

  • Bai, Chuanzhi;Yang, Qing
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.1
    • /
    • pp.129-137
    • /
    • 2010
  • In this paper, we introduce and study a system of nonlinear set-valued implicit variational inclusions (SNSIVI) with relaxed cocoercive mappings in real Banach spaces. By using resolvent operator technique for M-accretive mapping, we construct a new class of iterative algorithms for solving this class of system of set-valued implicit variational inclusions. The convergence of iterative algorithms is proved in q-uniformly smooth Banach spaces. Our results generalize and improve the corresponding results of recent works.

ON T0' SPACES

  • Lee, S.M.
    • Kyungpook Mathematical Journal
    • /
    • v.16 no.1
    • /
    • pp.61-62
    • /
    • 1976
  • PDF

RULED MINIMAL SURFACES IN PRODUCT SPACES

  • Jin, Yuzi;Kim, Young Wook;Park, Namkyoung;Shin, Heayong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1887-1892
    • /
    • 2016
  • It is well known that the helicoids are the only ruled minimal surfaces in ${\mathbb{R}}^3$. The similar characterization for ruled minimal surfaces can be given in many other 3-dimensional homogeneous spaces. In this note we consider the product space $M{\times}{\mathbb{R}}$ for a 2-dimensional manifold M and prove that $M{\times}{\mathbb{R}}$ has a nontrivial minimal surface ruled by horizontal geodesics only when M has a Clairaut parametrization. Moreover such minimal surface is the trace of the longitude rotating in M while translating vertically in constant speed in the direction of ${\mathbb{R}}$.

ON THE GEOMETRY OF LORENTZ SPACES AS A LIMIT SPACE

  • Yun, Jong-Gug
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.957-964
    • /
    • 2014
  • In this paper, we prove that there is no branch point in the Lorentz space (M, d) which is the limit space of a sequence {($M_{\alpha},d_{\alpha}$)} of compact globally hyperbolic interpolating spacetimes with $C^{\pm}_{\alpha}$-properties and curvature bounded below. Using this, we also obtain that every maximal timelike geodesic in the limit space (M, d) can be expressed as the limit curve of a sequence of maximal timelike geodesics in {($M_{\alpha},d_{\alpha}$)}. Finally, we show that the limit space (M, d) satisfies a timelike triangle comparison property which is analogous to the case of Alexandrov curvature bounds in length spaces.

MAXIMAL FUNCTIONS ALONG TWISTED SURFACES ON PRODUCT DOMAINS

  • Al-Salman, Ahmad
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.1003-1019
    • /
    • 2021
  • In this paper, we introduce a class of maximal functions along twisted surfaces in ℝn×ℝm of the form {(𝜙(|v|)u, 𝜑(|u|)v) : (u, v) ∈ ℝn×ℝm}. We prove Lp bounds when the kernels lie in the space Lq (𝕊n-1×𝕊m-1). As a consequence, we establish the Lp boundedness for such class of operators provided that the kernels are in L log L(𝕊n-1×𝕊m-1) or in the Block spaces B0,0q (𝕊n-1×𝕊m-1) (q > 1).