Kyungpook Math. J. Volume 16, Number 1 June, 1976

ON T_0 SPACES

By S.M. Lee

In this note we discuss a separation property which is weaker than T_1 , but not comparable with T_0 . The usage of terminology will be exactly same as in [1]. A topological space (X, \mathcal{U}) is said to be a T_0 space if for any point not in a closed set A in X, there exists an open set which contains A but not x.

THEOREM 1. The following statements are equivalent.

- (1) X is a T_0 space,
- (2) if $a \in \{x\}$ then $\{a\} = \{x\}$ for any a and x in X,
- (3) if $x \notin A$ then $\{x\} \cap A = \phi$ for any x in X and A closed in X.

PROOF. Assuming (1) and $a \in \overline{\{x\}}$ it is clear $\overline{\{a\}} \subset \overline{\{x\}}$. If $x \notin \overline{\{a\}}$ then there exists open set $U \supset \overline{\{a\}}$ and $x \notin U$. Therefore $x \in (\overline{\{x\}} \sim U) \supset \overline{\{x\}}$ and $(\overline{\{x\}} \sim U)$ is closed. This contradicts to the definition of closure. Hence $x \in \overline{\{a\}}$ and $\overline{\{x\}} \subset \overline{\{a\}}$, that implies $\overline{\{x\}} = \overline{\{a\}}$.

Assuming (2), if $\{x\} \cap A \neq \emptyset$, then $a \in \{x\} \cap A$, hence $\{x\} = \{a\} \subset A$ and $x \in A$. This is a contradiction.

Assuming (3) and $x \notin A$ and A is closed, then $X \sim \{x\}$ is an open set which contains A but not x.

It is clear that T_1 implies T_0 . However the conditions T_0 and T_0 are independent. The indiscrete space with at least two points is T_0 but not T_0 . Let X be the set of real numbers. Let $\mathscr{U} = \{(x: a \leq x < \infty) | a \in R\}$ Then (X, \mathscr{U}) is T_0 but not T_0 . There is a large important class of spaces which are T_0 but not T_1 , namely the semi-normed spaces and pseudo-metric spaces. The relation between T_0 , T_0 and T_1 is as follows.

THEOREM 2. A topological spaces is T_1 iff it is T_0' and T_0 .

PROOF. If there is x in X with $\overline{\{x\}} \neq \{x\}$ then there is y, different from x, and $y \in \overline{\{x\}}$. Since X is T_0 , by Theorem 1, we have $\overline{\{y\}} = \overline{\{x\}}$, since X is T_0 , y = x.

62 S.M. Lee

This is a contradiction. Therefore $\overline{\{x\}} = \{x\}$ for any x in X.

It is easy to see that the subspace of a T_0 space is T_0 . The next theorem is dealing with the product space of a family of T_0 spaces.

THEOREM 3. The product of a family of spaces is T_0' iff each member of the family is T_0' .

PROOF. Let $\{X_{\alpha}\}_{\alpha \in A}$ be a family of T_0 spaces. Let B be any closed set in $\Pi\{X_{\alpha}\}$ and x a point not in B. If $\overline{\{x\}} \cap B \neq \phi$ then there is a point a in $\overline{\{x\}} \cap B$. But since $\overline{\{x\}} = \overline{\Pi\{x_{\alpha}\}} = \overline{\Pi\{x_{\alpha}\}}$ we have $a_{\alpha} \in \overline{\{x_{\alpha}\}}$ for all α in A. Since X_{α} is T_0 space for each α , by Theorem 1 we have $\overline{\{a_{\alpha}\}} = \overline{\{x_{\alpha}\}}$ for all α in A. Hence

$$\overline{\{a\}} = \overline{\prod \{a_{\alpha}\}} = \overline{\prod \{a_{\alpha}\}} = \overline{\prod \{x_{\alpha}\}} = \overline{\prod \{x_{\alpha}\}} = \overline{\{x\}}$$

Since B is closed and $a \in B$ we have $\overline{\{a\}} \subset B$ hence $\overline{\{x\}} \subset B$ and $x \in B$. This is a contradiction. Hence $\overline{\{x\}} \cap B = \phi$ and $\prod \{X_{\alpha}\} \sim \overline{\{x\}}$ is open and contains B.

Next suppose that $\Pi\{X_{\alpha}\}$ is T_{0}' and β be any element in A. If X_{β} is not T_{0}' , then there is a closed set B_{β} in X_{β} and x_{β} not in B_{β} such that $B_{\beta} \cap \overline{\{x_{\beta}\}} \neq \emptyset$. Let $p \in \Pi\{X_{\alpha}\}$ such that $p_{\beta} = x_{\beta}$. Therefore $p \notin P_{\beta}^{-1}\{B_{\beta}\}$ but $\overline{\{p\}} \cap P_{\beta}^{-1}\{B_{\beta}\} \neq \emptyset$ and $P_{\beta}^{-1}\{B_{\beta}\}$ is closed that contradicts to that $\Pi\{X_{\alpha}\}$ is T_{0}' .

Kansas State University
Manhattan, Kansas 66502

REFERENCE

[1] J. Kelley, General Topology, Princeton, 1955.