• 제목/요약/키워드: Lyapunov matrix inequalities

검색결과 108건 처리시간 0.025초

A Line-integral Fuzzy Lyapunov Functional Approach to Sampled-data Tracking Control of Takagi-Sugeno Fuzzy Systems

  • Kim, Han Sol;Joo, Young Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2521-2529
    • /
    • 2018
  • This paper deals with a sampled-data tracking control problem for the Takagi-Sugeno fuzzy system with external disturbances. We derive a stability condition guaranteeing both asymptotic stability and H-infinity tracking performance by employing a newly proposed time-dependent line-integral fuzzy Lyapunov-Krasovskii functional. A new integral inequality is also introduced, by which the proposed stability condition is formulated in terms of linear matrix inequalities. Finally, the effectiveness of the proposed method is demonstrated through a simulation example.

Delay-dependent stabilization for time-delay systems;An LMI approach

  • Cho, H.J.;Park, Ju-H.;Lee, S.G.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1744-1746
    • /
    • 2004
  • This paper focuses on the problem of asymptotic stabilization for time-delay systems. To this end, a memoryless state feedback controller is proposed. Then, based on the Lyapunov method, a delay-dependent stabilization criterion is devised by taking the relationship between the terms in the Leibniz-Newton formula into account. Certain free weighting matrices are used to express this relationship and linear matrix inequalities (LMIs)-based algorithm to design the controller stabilizing the system.

  • PDF

시변 지연이 존재하는 선형시스템의 개선된 안정성 판별법 (Improved Stability Criteria for Linear Systems with Time-varying Delay)

  • 권오민;박주현;이상문
    • 전기학회논문지
    • /
    • 제59권12호
    • /
    • pp.2284-2291
    • /
    • 2010
  • In this paper, improved stability criteria for linear systems with time-varying delays are proposed. By constructing a new Lyapunov functional, novel stability criteria are established in terms of linear matrix inequalities (LMIs). Two numerical examples are carried out to support the effectiveness of the proposed method.

시변 지연이 존재하는 불확실 동적 시스템의 지연 의존 강인 안정성 (Delay-dependent Robust Stability of Uncertain Dynamic Systems with Time-varying Delays)

  • 권오민;박주현
    • 전기학회논문지
    • /
    • 제58권1호
    • /
    • pp.181-186
    • /
    • 2009
  • In this paper, the stability analysis for uncertain dynamic systems with time-varying delays is considered. By constructing a new Lyapunov functional, a novel stability criterion is established in terms of linear matrix inequalities (LMIs). Two numerical examples are carried out to support the effectiveness of the proposed method.

New Stability Criteria for Linear Systems with Interval Time-varying State Delays

  • Kwon, Oh-Min;Cha, Eun-Jong
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권5호
    • /
    • pp.713-722
    • /
    • 2011
  • In the present paper, the problem of stability analysis for linear systems with interval time-varying delays is considered. By introducing a new Lyapunov-Krasovskii functional, new stability criteria are derived in terms of linear matrix inequalities (LMIs). Two numerical examples are given to show the superiority of the proposed method.

Robust integral tracking control of Magnetic Levitating System via feedback linearization

  • Wonkee Son;Kim, Yongjun;Park, Jinyoung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.48.2-48
    • /
    • 2001
  • This paper deals with robust integral tracking control problem based on Lyapunov method via FL(Feedback Linearization) in order to solve a reference tracking problem of nonlinear system with parameter uncertainties. To overcome a restrictive matching condition the uncertainties is characterized in a suitable form. The design procedure which combine FL and LMIs(Linear Matrix Inequalities) based on Lyapunov method to achieve the robust performance and stability is developed. Finally, the performance of proposed controller is demonstrated via simulation of a linear reference tracking problem in the MLS(Magnetic levitating System).

  • PDF

특이공간 회피에 의한 2차 비선형 시스템의 스위칭 제어기 설계 (Switching Control for End Order Nonlinear Systems by Avoiding Singular Manifolds)

  • 염동회;임기홍;최진영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 A
    • /
    • pp.315-318
    • /
    • 2003
  • This paper proposes a switching control method applicable to any affine, 2nd order nonlinear system with single input. The key contribution is to develop a control design method which uses a piecewise continuous Lyapunov function non-increasing at every discontinuous point. The proposed design method requires no restrictions except full state availability. To obtain a non-increasing, piecewise continuous Lyapunov function, we change the sign of off-diagonal term s of the positive definite matrix composing the former Lyapunov function according to the sign of the Inter-connection term. And we use the solution of inequalities which guarantee each Lyapunov function is non-increasing at any discontinuous point.

  • PDF

Intelligent Scheduling Control of Networked Control Systems with Networked-induced Delay and Packet Dropout

  • Li, Hongbo;Sun, Zengqi;Chen, Badong;Liu, Huaping;Sun, Fuchun
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권6호
    • /
    • pp.915-927
    • /
    • 2008
  • Networked control systems(NCSs) have gained increasing attention in recent years due to their advantages and potential applications. The network Quality-of-Service(QoS) in NCSs always fluctuates due to changes of the traffic load and available network resources. To handle the network QoS variations problem, this paper presents an intelligent scheduling control method for NCSs, where the sampling period and the control parameters are simultaneously scheduled to compensate the effect of QoS variation on NCSs performance. For NCSs with network-induced delays and packet dropouts, a discrete-time switch model is proposed. By defining a sampling-period-dependent Lyapunov function and a common quadratic Lyapunov function, the stability conditions are derived for NCSs in terms of linear matrix inequalities(LMIs). Based on the obtained stability conditions, the corresponding controller design problem is solved and the performance optimization problem is also investigated. Simulation results are given to demonstrate the effectiveness of the proposed approaches.

Parametric Approaches to Sliding Mode Design for Linear Multivariable Systems

  • Kim, Kyung-Soo;Park, Young-Jin
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권1호
    • /
    • pp.11-18
    • /
    • 2003
  • The parametric approaches to sliding mode design are newly proposed for the class of multivariable systems. Our approach is based on an explicit formula for representing all the slid-ing modes using the Lyapunov matrices of full order. By manipulating Lyapunov matrices, the sliding modes which satisfy the design criteria such as the quadratic performance optimization and robust stability to parametric uncertainty, etc., can be easily obtained. The proposed ap-proach enables us to adopt a variety of Lyapunov- (or Riccati-) based approaches to the sliding mode design. Applications to the quadratic performance optimization problem, uncertain systems, systems with uncertain state delay, and the pole-clustering problem are discussed.

DELAY-DEPENDENT GLOBAL ASYMPTOTIC STABILITY ANALYSIS OF DELAYED CELLULAR NEURAL NETWORKS

  • Yang, Yitao;Zhang, Yuejin
    • Journal of applied mathematics & informatics
    • /
    • 제28권3_4호
    • /
    • pp.583-596
    • /
    • 2010
  • In this paper, the problem of delay-dependent stability analysis for cellular neural networks systems with time-varying delays was considered. By using a new Lyapunov-Krasovskii function, delay-dependant stability conditions of the delayed cellular neural networks systems are proposed in terms of linear matrix inequalities (LMIs). Examples are provided to demonstrate the reduced conservatism of the proposed stability results.