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Delay-dependent stabilization for time-delay systems: An LMI approach∗
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Abstract: This paper focuses on the problem of asymptotic stabilization for time-delay systems. To this end, a memoryless state feedback
controller is proposed. Then, based on the Lyapunov method, a delay-dependent stabilization criterion is devised by taking the relationship
between the terms in the Leibniz-Newton formula into account. Certain free weighting matrices are used to express this relationship and linear
matrix inequalities (LMIs)-based algorithm to design the controller stabilizing the system.
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1. Introduction
Time-delay leads to instability and poor performance in various en-
gineering systems such as chemical process, electrical network, nu-
clear reactor, biological system and economic systems. Thus, the
problems of asymptotic stability and stabilization for time-delay
systems have received considerable attention over the decades.
In the past decades, Lyapunov method, characteristic equation
method, or the state solution approach have been utilized for an-
alyzing the problems (for details, see [2]). In recent years, LMI
approaches based on convex optimization algorithms have been ex-
tensively applied to solve the problems. The LMI approach needs
no turning of parameters and / or matrices to derive certain criteria
for stability and stabilization of various dynamic system. Also it
can be solved numerically efficiently by using interior-point algo-
rithm which has recently been developed for solving optimization
problem involving LMIs. Thus, using the LMI approach, many sta-
bility criteria for guaranteeing stability of the system developed in
the literature. In general, the criteria can be classified in two cat-
egories: delay-independent and delay-dependent criteria. One ap-
proach is to contrive the stability conditions which do not dependent
on the delay, and the other is to take it into account. Since the delay-
dependent criteria make use of information on the length of delays,
they are usually less conservative than delay-independent systems
(see [3], [4], and [5]). Recently, Wu et al. [5] introduced a new
lemma to derive stability criterion for the system, and they showed
their results which are less conservative then another one. How-
ever, the design problem of stabilizing controller is not considered
in their work.
This paper concerned with the problem of delay-dependent asymp-
totic stabilization of time-delay systems utilizing the method devel-
oped by [5]. We propose a memoryless state feedback controller
which maximizes the delay bound of the system. A novel stabiliza-
tion criterion is derived using Lyapunov theory and LMI framework.
In this paper, in order to solve the LMIs, we utilize Matlab’s LMI
Control Toolbox, which implements state-of the-art interior-point
algorithms, which is significantly faster than classical convex opti-
mization algorithms [1]. A numerical example is given to illustrate
our main method.

Notations. R
n denotes n-dimensional Euclidean space, R

n×m is
the set of all n × m real matrices,and � represents the elements
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below the main diagonal of a symmetric block matrix. diag{·} de-
notes the block diagonal matrix. The notation W > 0 (≥, <,≤ 0)

denotes a symmetric positive definite (positive semidefinite, nega-
tive, negative semidefinite) matrix W .

2. Problem formulation

Consider the following delayed system:

ẋ(t) = Ax(t) + A1x(t − d) + Bu(t), t > 0, (1)

x(t) = φ(t), t ∈ [−d, 0],

where x(t) ∈ R
n is the state vector, and u(k) ∈ R

m is the control
input, A, A1 ∈ R

n×n and B ∈ R
n×m are constant matrices, φ(t)

is the initial condition of t ∈ [−d, 0], and d > 0 denotes the con-
stant time delay.
In this paper, to stabilize system (1), we propose the following
memoryless state-feedback controller

u(t) = Kx(t) (2)

where K ∈ R
m×n is a constant gain matrix to be designed later.

The following lemma will be used to proof our main theorem.

Lemma 1. [5] The free weighting matrices Y and T indicate the
relationship between the terms in the Leibniz-Newton formula.

2(xT (t)Y + xT (t − d)T )

×
(
x(t) −

∫ t

t−d

ẋ(s)ds − x(t − d)
)

= 0. (3)

3. Main results

In this section, we present a delay-dependent criterion for asymp-
totic stabilization of time-delay system (1) based on the Lyapunov
method and LMI approach.

Theorem 1. Given d > 0 , the system (1) with the control
input u(t) = GV −1x(t) is asymptotically stable if there exist
positive-definite matrices V = V T > 0, N = NT > 0, sym-
metric matrices G, L, M , and semi-positive-definite matrix Σ =
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[
Σ11 Σ12

ΣT
12 Σ22

]
≥ 0 such that

Π =

⎡⎢⎣ Π11 Π12 dV AT + dGT BT

� Π22 dV AT
1

� � −dV

⎤⎥⎦ < 0, (4)

Γ =

⎡⎢⎣ Σ11 Σ12 L

� Σ22 M

� � V

⎤⎥⎦ ≥ 0, (5)

where

Π11 = V AT + GT BT + AV + BG + L + LT + N + dΣ11

Π12 = A1V − L + MT + dΣ12

Π22 = −M − MT − N + dΣ22.

Proof. The closed-loop system of (1) with the control input (2) is

ẋ(t) = (A + BK)x(t) + A1x(t − d). (6)

Consider a Lyapunov function candidate as

V (xt) = xT (t)Px(t) +

∫ t

t−d

xT (s)Qx(s)ds

+

∫ 0

−d

∫ t

t+θ

ẋT (s)P ẋ(s)dsdθ. (7)

By the Leibniz-Newton formula, the following equation satisfies

x(t) −
∫ t

t−d

ẋ(s)ds − x(t − d) = 0.

Then, for any appropriately dimensioned matrices Y and T ,
Eq. (3) holds. For any semi-positive definite matrix X =[

X11 X12

XT
12 X22

]
≥ 0, the following also holds

dξT (t)Xξ(t) −
∫ t

t−d

ξT (t)Xξ(t)ds = 0, (8)

where ξ(t) =
[

xT (t) xT (t − d)
]T

.

Then, the time derivative, V̇ (xt), of V (xt) in (7) is

V̇ (xt) = ẋT (t)Px(t) + xT (t)P ẋ(t) + xT (t)Qx(t)

− xT (t − d)Qx(t − d) + dẋT (t)P ẋ(t)

−
∫ t

t−d

ẋT (s)P ẋ(s)ds

= xT (t)((A + BK)T P + P (A + BK))x(t)

+ 2xT (t)PA1x(t − d) + xT (t)Qx(t)

− xT (t − d)Qx(t − d) + xT (t)(d(A + BK)T P

× (A + BK))x(t) + xT (t)(d(A + BK)T PA1)

× x(t − d) + xT (t − d)(dAT
1 P (A + BK))x(t)

+ xT (t − d)dAT
1 PA1x(t − d)

−
∫ t

t−d

ẋT (s)P ẋ(s)ds.

Utilizing (3) and (8) gives that

V̇ (xt) = xT (t)((A + BK)T P + P (A + BK))x(t)

+ 2xT (t)PA1x(t − d) + xT (t)Qx(t)

− xT (t − d)Qx(t − d) + xT (t)(d(A + BK)T P

× (A + BK))x(t) + xT (t)(d(A + BK)T PA1)

× x(t − d) + xT (t − d)(dAT
1 P (A + BK))x(t)

+ xT (t − d)dAT
1 PA1x(t − d)

−
∫ t

t−d

ẋT (s)P ẋ(s)ds

+ 2(xT (t)Y + xT (t − d)T )

× (x(t) −
∫ t

t−d

ẋ(s)ds − x(t − d))

+ dξT (t)Xξ(t) −
∫ t

t−d

ξT (t)Xξ(t)ds

= ξT (t)Π1ξ(t) −
∫ t

t−d

ζT (t, s)Γ1ζ(t, s)ds, (9)

where

ζ(t, s) =
[

xT (t) xT (t − d) ẋT (s)
]T

,

Π1 =

[
(1, 1) (1, 2)

� (2, 2)

]
, (10)

Γ1 =

⎡⎢⎣ X11 X12 Y

� X22 T

� � P

⎤⎥⎦ , (11)

with

(1, 1) = (A + BK)T P + P (A + BK) + Y + Y T + Q

+ dX11 + d(A + BK)T P (A + BK),

(1, 2) = PA1 − Y + T T + dX12 + d(A + BK)T PA1,

(2, 2) = −T − T T − Q + dX22 + dAT
1 PA1.

If Π1 < 0, and Γ1 ≥ 0, then V̇ (xt) < 0 for any ξ(t) �= 0, which
guarantees the stability of the system (1)
By Schur complement [1], Π1 < 0 is equivalent to

Π2 =⎡⎢⎢⎢⎢⎢⎢⎢⎣

(A + BK)T P

+P (A + BK)

+Y + Y T

+Q + dX11

PA1 − Y

+T T + dX12
d(A + BK)T P

�
−T − T T

−Q + dX22
dAT

1 P

� � −dP

⎤⎥⎥⎥⎥⎥⎥⎥⎦
< 0.

(12)

By pre- and post-multiplying diag{P−1, P−1, P−1} for both sides
of Π2 and Γ1, respectively, and defining V = P−1, L =

P−1Y P−1, M = P−1TP−1, N = P−1QP−1, Σ11 =

P−1X11P
−1, Σ12 = P−1X12P

−1, Σ22 = P−1X11P
−1, G =

KP−1, we have the two inequalities (4) and (5). This gives that the
system (1) with u(t) = GV −1 is asymptotically stabilized. This
completes the proof. �

Remark 1. The proposed method can be easily extended to time-
delay system with time-varying delay d(t) satisfying ḋ(t) ≤ 1.
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4. Numerical example
This section gives an example to illustrate our result in this paper.
Consider the system studied in [6], [7], [8]

ẋ(t) =

[
0 0

0 1

]
x(t) +

[
−1 −1

0 0.9

]
x(t − d)

+

[
0

1

]
u(t).

Now, we address the problem of finding a state-feedback controller
for guaranteeing stability of the above system.
Table 1 gives a comparison of several results about the maximum
allowable bound of delay and corresponding control gain.

Table 1. Stability bound of d and control gain K

d Control gain

Li & Souza [6] d ≤ 0.999 −[0.10452 749058]

Fridman & Shaked [7][8] d ≤ 1.408 −[53.51 294.935]

Ours d ≤ 1.6 −[0.001 1.0154]

From Table 1, One can see that our result guarantees larger delay
bound and small control gain.

5. Conclusion
This paper addressed the problems of asymptotic stabilization for
time-delay systems. An LMI-based method for delay-dependent
stabilization via linear memoryless state feedback has been devel-
oped. The robust stabilization of uncertain time-delay systems will
be discussed in our future works.
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