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Delay-dependent stabilization for time-delay systems. An LMI approach*
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Abstract: This paper focuses on the problem of asymptotic stabilization for time-delay systems. To this end, a memoryless state feedback
controller is proposed. Then, based on the Lyapunov method, a delay-dependent stabilization criterion is devised by taking the relationship
between the terms in the Leibniz-Newton formulainto account. Certain free weighting matrices are used to express this relationship and linear
meatrix inequalities (LMIs)-based algorithm to design the controller stabilizing the system.
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1. Introduction
Time-delay leads to instability and poor performancein various en-
gineering systems such as chemical process, electrical network, nu-
clear reactor, biological system and economic systems. Thus, the
problems of asymptotic stability and stabilization for time-delay
systems have received considerable attention over the decades.
In the past decades, Lyapunov method, characteristic equation
method, or the state solution approach have been utilized for an-
alyzing the problems (for details, see [2]). In recent years, LMI
approaches based on convex optimization algorithms have been ex-
tensively applied to solve the problems. The LMI approach needs
no turning of parameters and / or matrices to derive certain criteria
for stability and stabilization of various dynamic system. Also it
can be solved numerically efficiently by using interior-point algo-
rithm which has recently been developed for solving optimization
problem involving LMIs. Thus, using the LMI approach, many sta-
bility criteria for guaranteeing stability of the system developed in
the literature. In general, the criteria can be classified in two cat-
egories: delay-independent and delay-dependent criteria. One ap-
proach isto contrive the stability conditionswhich do not dependent
on the delay, and the other isto takeit into account. Sincethe delay-
dependent criteria make use of information on the length of delays,
they are usually less conservative than delay-independent systems
(see [3], [4], and [5]). Recently, Wu et al. [5] introduced a new
lemma to derive stability criterion for the system, and they showed
their results which are less conservative then another one. How-
ever, the design problem of stabilizing controller is not considered
in their work.
This paper concerned with the problem of delay-dependent asymp-
totic stabilization of time-delay systems utilizing the method devel -
oped by [5]. We propose a memoryless state feedback controller
which maximizes the delay bound of the system. A novel stabiliza-
tion criterionisderived using Lyapunov theory and LM framework.
In this paper, in order to solve the LMIs, we utilize Matlab's LMI
Control Toolbox, which implements state-of the-art interior-point
algorithms, which is significantly faster than classical convex opti-
mization algorithms[1]. A numerical exampleis given to illustrate
our main method.

Notations. R™ denotes n-dimensional Euclidean space, R™*™ is
the set of al n x m rea matrices,and x represents the elements
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below the main diagonal of a symmetric block matrix. diag{-} de-
notes the block diagonal matrix. The notation W > 0 (>, <, < 0)
denotes a symmetric positive definite (positive semidefinite, nega-
tive, negative semidefinite) matrix W.

2. Problem formulation
Consider the following delayed system:

Q.
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o~
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|

Az (t) + Arz(t —d) + Bu(t), t>0, (1)
{B(t) = ¢(t)7 te [_d’ 0]3

where z(t) € R" isthe state vector, and u(k) € R™ isthe control
input, A, A; € R™*™ and B € R™*™ are constant matrices, ¢(t)
isthe initial condition of ¢ € [—d, 0], and d > 0 denotes the con-
stant time delay.

In this paper, to stabilize system (1), we propose the following
memoryless state-feedback controller

u(t) = Kx(t) @

where K € R™*™ isaconstant gain matrix to be designed |ater.
The following lemmawill be used to proof our main theorem.

Lemma 1. [5] The free weighting matrices Y and 7" indicate the
relationship between the terms in the Leibniz-Newton formula.

20" ()Y + 2" (t — d)T)

x <ac(t) - /tid;ic(s)ds —a(t - d)) —0.

3. Main results

In this section, we present a delay-dependent criterion for asymp-
totic stabilization of time-delay system (1) based on the Lyapunov
method and LM approach.

Theorem 1. Given d > 0, the system (1) with the control
input w(t) = GV 'z(t) is asymptoticaly stable if there exist
positive-definite matrices V = V7 > 0,N = NT > 0, sym-
metric matrices G, L, M, and semi-positive-definite matrix ¥ =



ElTl 2 > 0 such that
Z12 Z22
I 0, I, dvAT +dGTBT
1T = * HQQ dVA’{ < 07 (4)
* * —dV
[ Y5 S L
r = x Yo M | >0, )
* * 1%
where
O, = T+ G"BT+ AV+BG+ L+ LY + N+dsi
Mo = AV—-L+M +dSn
o = —-M— MY — N+ dSs.
Proof. The closed-loop system of (1) with the control input (2) is
i(t) = (A+ BK)z(t) + Aiz(t — d). (6)
Consider a Lyapunov function candidate as
t
Viw) = ()Pm<w+/" 7(5)Qu(s)ds
/ / s)dsd. 7
t+6

By the Leibniz-Newton formula, the following equation satisfies

z(t) — /tid z(s)ds — z(t — d) = 0.

Then, for any appropriately dimensioned matrices Y and T,
Eg. (3) holds. For any semi-positive definite matrix X
X1 X2
Xiy Xz

] > 0, thefollowing also holds

- [ ertxewas -

where (1) = | #7(1) 2" (t — d) ]T
Then, the time derivative, V (z;), of V(z¢) in (7) is

®

&L () Px(t) + 27 () Pa(t) + 27 (£)Qu(t)
— 2" (t — d)Qu(t — d) + di” (t) Pi(t)
_ /t () Pl)ds

"(#)((A+ BK)" P+ P(A+ BK))x(t)
+ 22T () PAz(t — d) + =" (£)Qux(2)
— 2" (t — d)Qu(t — d) + =" (t)(d(A+ BK)" P
x (A+ BK))z(t) + 2" (t)(d(A+ BK)" P
x x(t —d) + 27 (t — d)(dAT P(A + BK))x(t
+ 2" (t — d)dAT PA z(t — d)

- /,:d &7 (s)Pi(s)ds.
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Utilizing (3) and (8) givesthat
V() 2" (t)((A+ BK)"P + P(A + BK))x(t)
+ 22" () PAz(t — d) + =" (1) Q(t)
— 2" (t —d)Qx(t — d) + =" (t)(d(A+ BK)" P
x (A+ BK))z(t) + 2" (t)(d(A+ BK)"PA,
x z(t —d) + 27 (t — d)(dAT P(A + BK))a(t
+ 27 (t — d)dAT PA z(t — d)

— /t_d &7 (s)Pi(s)ds
+ 26T ()Y + 27 (¢ — d)T)

xwmf/ #(s)ds — a(t — d))

/sxs

/ ¢T(t, $)1C(t, s)ds,

)
)

+deT(
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where

) = [@T0) Te-a) ¥ |

[@n (1,2)

th (2,2)

X (10)

Y
T,
P

X1
*

Xi2
Xa2
*

Iy (11)

*
with
(1,1) (A+ BK)"P+P(A+BK)+Y +Y" +Q
+dX11 +d(A+ BK)"P(A + BK),
(1,2) PAL =Y +T" 4 dX12 +d(A+ BK)" PA;,
(2,2) —T —T" — Q +dXs + dAT PA,.
If II; < 0,and Ty > 0, then V(z;) < 0 for any £(t) # 0, which
guarantees the stability of the system (1)
By Schur complement [1], TI; < 0 isequivalent to

I, =
(A+ BK)TP
+P(A + BK) PA - Y r
+Y +v7 +T7T + dX12 #4+BK)"P
+Q +dXi1 < 0.
T
* -r-T dAT P
—Q + dXa2
* * —dP
(12)
By pre- and post-multiplying diag{P~', P~!, P~} for both sides
of I, and T';, respectively, and defining V = P~!, L =
plyp', M = P'TP! N plQrt, »; =
P 'X11 P, B2 = PIXo P!, B = PIX PTG =
K P~!, wehavethetwo inequalities (4) and (5). This givesthat the

! is asymptotically stabilized. This
| |

system (1) with u(t) = GV~
completes the proof.

Remark 1. The proposed method can be easily extended to time-
delay system with time-varying delay d(t) satisfying d(t) <1



4. Numerical example
This section gives an example to illustrate our result in this paper.
Consider the system studied in [6], [7], [8]

Bt) = 8 ?}x(t)—f—[_ol &Hx(t—d)

Now, we address the problem of finding a state-feedback controller
for guaranteeing stability of the above system.

Table 1 gives a comparison of several results about the maximum
allowable bound of delay and corresponding control gain.

Table 1. Stability bound of d and control gain K

d Control gain
Li & Souza[6] d <0.999 | —[0.10452 749058]
Fridman & Shaked [7][8] | d < 1.408 | —[53.51 294.935]
Ours d<1.6 —[0.001 1.0154]

From Table 1, One can see that our result guarantees larger delay
bound and small control gain.

5. Conclusion
This paper addressed the problems of asymptotic stabilization for
time-delay systems. An LMI-based method for delay-dependent
stabilization via linear memoryless state feedback has been devel-
oped. The robust stabilization of uncertain time-delay systems will
be discussed in our future works.
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