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DELAY-DEPENDENT GLOBAL ASYMPTOTIC STABILITY
ANALYSIS OF DELAYED CELLULAR NEURAL NETWORKS

YITAO YANG* AND YUEJIN ZHANG

ABSTRACT. In this paper, the problem of delay-dependent stability analy-
sis for cellular neural networks systems with time-varying delays was con-
sidered. By using a new Lyapunov-Krasovskii function, delay-dependant
stability conditions of the delayed cellular neural networks systems are pro-
posed in terms of linear matrix inequalities (LMIs). Examples are provided
to demonstrate the reduced conservatism of the proposed stability results.
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1. Introduction

Over the past years, cellular neural networks(CNNs) ( see [6]), have been
widely investigated and have found applications in many areas such as image
processing, pattern recognition, signal processing, solving nonlinear algebraic
equations [7] - [8]. Such applications heavily depend on the dynamical behaviors.
In recent years, the stability problem, which is one of the most important issues
on the analysis of the dynamical behavior has received much attention, and many
results on this problem have been reported; e.g., [9], and the references therein.

On the other hand, time delays are unavoidably in application of neural net-
works, and a time delay is often a source of instability and oscillations in dynamic
system. So the stability analysis of delayed cellular networks(DCNNs) has be-
come one of the most active research areas and has attracted much attention
during the past years [1] - [5], [11] - [24]. For example, stability conditions for
delayed Hopfield neural networks have been reported in the literature [21] and
[23]. In [1], [4] and [15], the exponential stability of delayed neural networks
are studied and sufficient conditions are obtained. Delay-dependent and Delay-
independent global asymptotical stability criterions are given in [2] - [3], [5], [13]
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- [14], [17] - [20], [24], among them [3] and [24] considered the global asymptotical
stability of DCNNs with uncertain parameters.

In this paper, we are concerned with the problem of global asymptotic stability

analysis of DCNNs and DCNNs with uncertain parameters. A new Lyapunov-
Krasovskii function, in which cross terms between the state and nonlinear func-
tion of the state as well as the delayed state and nonlinear function of the de-
layed are included, is introduced. By using the Leibniz-Newwton formula and
some LMI techniques , delay-dependent global asymptotic stability criterions are
derived based on the new Lyapunov-Krasovskii function. The stability results
derived from the Lyapunov-Krasovskii function with cross terms are less con-
servative than those derived from Lyapunov-Krasovskii function without cross
terms. Numerical examples are also provided to demonstrate the less conserva-
tiveness of the proposed approach.
Notation: Throughout this paper, for real symmetric matrices X and Y, the no-
tation X > Y (or X > Y) means that the matrix X —Y is positive semi-definite
(or positive definite). The notation X7 and X! mean the transpose of and the
inverse of a square matrix X. |[z| denotes the Euclidean norm of a vector z.
Matrices, if not explicitly stated, are assumed to have compatible dimensions for
algebraic operations.

2. Problem formulation
Consider the following DCNN:
u(t) = —Au(t) + Bg(u(t)) + Big(u(t — 7(t))) + v (1)
z(t) = <,{>(t), t € [-h,0] (2)

where u(t) = [ui(t),uz(t),...,un]T is the neural state vector, A = diag(a1,
asz,...,an) is a positive diagonal matrix, g(u(t)) = [g1(u1(t)), g2(us2(t)),...,
gn(un (t))]T denotes the neuron activation with g(0) = 0, and v = [v1,v2, ... ,vs]7
is a constant input vector, B = (b;j)nxn and By = (b}j)n «n are the interconnec-
tion matrices representing the weight coefficients of the neorons.The delay 7(t)

is a time-varying differentiable function satisfying

7(t) <p, 0<7(t)<h. (3)
In addition, in the analysis of neural networks, it is usually assumed that the
activation functions are continuous, differentiable, monotonically increasing and

bounded. In this paper, we will assume that the activation functions are bounded
and satisfy the following condition:

9i(z) — 9;(y)
r—y
where 0, 7 =1,2,...,n are positive constants.

In the following, we always shift the equilibrium point u* of system (1) to the
origin by the transformation z* = v — u*, which changes system (1) to

- &(t) = —Az(t) + Bf(2(t)) + B f(z(t — 7(¢))) | ()

0< <o;, Vo,yeR, z#y, j=12,...,n (4)
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where z(t) = [z1(t),z2(t),...,z,(t)]T is the state vector of the transformed
system, and f(z(t)) = [fi(21(8)), fa(@2(); - - s Ful@al)]T, Fi(z;) = g;(x; -
uj) — gj{u}). Note that the functions f;(-),j = 1,2,...,n satisfy the following
conditions:
fi(z5)
J
The main purpose of this paper is to establish delay-dependent sufficient con-
dition based on linear matrix inequalities(LMIs) for checking the global asymp-
totical stability of the delayed cellular neural networks. In Section 3, DCNNs
and DCNNs with uncertain parameters are considered respectively and stability
criterions are stated. Numerical examples are provided to demonstrate the re-
duced conservativeness of the proposed results in Section 4, Concluding remarks
are given in Section 5.

OS de, fj(O)ZO, Va:j;éo,jzl,Z,...,n. (6)

3. Stability Criterion

At first we introduce the following lemma, which will be used in the proof of
our main result.

Lemma 1 [10](Jensen Inequality) For a matrix P > 0, scalar 7(t) < hjas, and
any differentiable vector function z(¢) with appropriate dimension, we have

¢ T i .
: . - .
</t—-'r(t) SL‘(S)ds) P ([_T(t) x(s)ds) < hup /t_T(t)SU (s)Pz(s)ds (7)

Now we are in a position to give an asymptotic stability condition for the delayed
cellular neural network system (5).

Theorem 1 Under the assumption (6), the origin of the DCNN in (5) is globally
asymptotically stable for any delay satisfying 0 < 7(¢) < h,7(t) < p if there
exist matrices P = PT > 0, @ = QT > 0, Ny, N, Ny, and diagonal matrices
S>0, H>0, U >0, N3 > 0 such that the following LMIs hold:

P11 Pip D3 Dy Dys |
¥ Doy Doz Doy Pos
b = * * P33 D3y Pss <0 (8)
* * x Py Dys
| x * * *  Pgs |
[ P11 Pio ]
v=| pf p22]20 (9)

where

$11=—-PA—- AP+ Py — N; — N{ + R2ATQA,
®15=N, — NI, &3 = PB+ P, + HZ — h*ATQB,
‘I>14 = PB1 — thTQB1 - NZ, (1)15 = Nl,

Doy = _(1 —N)Pu + NéT + Na, o3 = N:{,

oy = “(1 ‘M)P12+UE+NE, ®o5 = Ny,

®y3 =SB+ BTS + Py —2SAY"! —2H — 2N35!
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+ ]’LQBTQB, b3y = h2BTQBl + SBs,
P35 = Ny, gy = —(1 — )Pz — 2U + K2 BT QBy,
$,5 = Ny, P55 = —Q, X = diag(o1,09,...,0,) and * denotes the corresponding
transposed block matrix due to symmetry.

Proof. We construct Lyapunov-Krasovskii function as following;:

V(a(t) = Vi(z(t) + Va(a(t) + Va(a(t) (10)
Where
Vi(x(t)) = 2T (t)Po(t) + 2 1, 5 fy " fi(s)ds (11)
Va(z(t)) = [,y n7(s)¥n(s)ds (12)
Va(@(t) = b [2, [}, 537 (0)Qi(a)dadf (13)

where VU is defined in (9) and n(s) =[ 27(s) fT(z(s)) ]T. The derivative of
V1(z(t)) along the solution of system (5) is given by

Vi(z(t)) = 22T (t)Pi(t) + 2281'1%(3%')5%1

i=1
= 227 P[-Axz(t) + Bf(2(t)) + BLf(z(t — 7(t)))]
+27 (2(T))S[—Ax(t) + Bf (z(t))
+B1 f(z(t — 7(t)))]
= — 26T (t)PAx(t) + 22T (t) PBf (z(t))

+ 227 (8)PByf(a(t — 7(2))

— 2f7(2(t))SAx(t) + 27 (x(t))SBf(z(t))

+ 2f7 (2(t))SB1 f(z(t — 7(t))) (14)
Considering the relationship in (6), for a diagonal matrix
H > 0, we can deduce

2fT(x(t) H f(z(t)) < 22T () HEf((t)) (15)
Then, by (14) and (15), it can be shown that
Vi(z(t)) < —227(t)PAz(t) + 227 (t)(PB + H) f ((t))
+2z7 (t)PB: f(z(t — 7(t)))
+ fT(z(t))(2SB — 2SAT ™ — 2H) f(x(t))
+2f7(z(t))SB1 f(x(t — 7(t))) - (16)

After some algebraic manipulations, the derivative of V5(z(t)) along the solution
of system (5) provides :
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Va(z(8)) = 7 (&)¥n(t) = (L= 7(&))n" (t = 7(£) In(t — 7(t))
T Py Prio z(t)
o o) ]| B || s |
—(1—7@t) [ Tt~ 7(@t) fT=(t—-7(t) ]

L me | ey ]

< z7(t)Piz(t) + 227 (t) Praf (z(t)) + [T (2(t)) Pao
x f(z(t) — (1 — p)a” (t — 7(t)) Puz(t — 7(t))
—2(1 — )z (t — 7(t)) Praf(z(t — 7(1)))
— (1= )T (=t - 7(t))) Paa f(2(t = 7(2)))

Similar to (15), for a diagonal matrix U > 0, we have
21" (x(t = 7(1)))U f(2(t = 7(1)))
<al(t=T(t))USf(a(t — 7(t)))
By (17) and (18), we deduce

Va(o(t)) < &”(t) Pua(t) + 227 (£) Praf(2(t))
+ f7 (x(t)) Poa f(2(t))
— (1= wa"(t = 7(£) Pua(t — 7())
+227(t — 7(6))[US — (1 - p)Pi2] f(w(t — 7(2)))
= 7 ((t = T@)[(L = p) Pz + 2U] f(=(t — 7(2)))

The derivative of V3(z(t)) along the solution of system (5) yields
@) = b [ WT0QH0 57+ HQu( + 913
= h2zT(t)Qi(t) — h /_ 0’ T (t + B)Qi(t + B)dB
= 22T (t)Qi(t) — h /t ih T ()Qi(a)do

< W27 (H)Qi(t) — h /t ey

Applying Lemma 1 to (20) leads to

T

Va(z(t)) < h2&T(8)Qi(t) - (/;T(t) :'c(a)da) Q (/t:(t) .’i:(oz)da)
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(18)

(19)

(20)

(21)
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By the Leibniz-Newwton formula, one has
t

0=2¢(T(t)N [—x(t) +ax(t—7(t) + /t

—7(t)

a':(a)da}

t

+2f7 (x(t)) N3 [—a:(t) +z(t — 7(t)) + /t :i:(a)da} (22)

—7(t)
where N = [N' NI N7, ¢(t) = [zT(t) 2T (t—7(t)) fF (x(t—7(t)))]T, diagonal
matrix N3 is positive definite and IV;, ¢ = 1, 2,4 are any matrices with appropriate
dimensions. Similar to (15) and (18), we have

— 217 (2(t)) Naz(t) < =27 (x(8)) NaZ ™" f(x(t)) (23)
It is easy to see from (22) and (23) that

t

0< 2¢T(t)N [—x(t) +z(t—7(t)) + /

t—7(t)

:i:(a)da}

—2fT (z(t))Ns =7 f(2(t) + 217 (2(8)) Naz(t — 7(2))
+217 (2()) N3 / i(a)do
t—7(t)) ,
= 227 (t)N12(t) + 227 (£)(Ny — NF )z(t — 7(t))
227 (t — 7(t)) Naw(t — 7(t)) — 22T () N{ f(=(t — 7(1)))

+227 (¢~ r(O)NF S (a(t ~ 7(0)
22T (£)N t T(a)da
+2z° (t) 1/t_T(t) ( )
2$T — N2 z(a)d
w2 (e ()N, [ i)

+;2fT(a:(t - T(t)))N4/ ( ):’c(a)da
—2fT(@(t))NsZ ™ f(x(t) + 2T (z(t)) Nz (t — 7(t))
t

+2£7 (x(t)) Ny / #(a)da (24)
t—7(1))
Then, by (14) - (24), it can be shown that V(z(t)) < €7 (¢)®E(t) where

@) =27 (1), "t —7(t)), fT(=(t), [ (a(t—T(1))), / " (a)da]”

t—7(t)

Finally, by (8), there exists a positive scalar a such that V(z(t)) < —al|z(t)]?,
which guarantees the stability of the system. This completes the proof. ]

Remark 1. The cross terms between x(t) and f(x(t)), as well as cross terms be-
tween z(t —7(t)) and f(xz(t—7(t))) are included in the new Lyapunov-Krasovskii
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function (10). Therefore, the result of theorem 1 derived from this kind of
Lyapunov-Krasovskii function is less conservative than the ones derived from
Lyapunov-Krasovskii function not including these cross terms.

Remark 2. In [20], time-varying delay system are considered and delay - inde-
pendent exponential stability criterions are proposed. Generally speaking, delay-
dependent criteria is less conservative than delay-independent criteria when the
delay is small.

Using Schur complement lemma to (8), the following corollary is obtained
immediately.

Corollary 1. Under the assumption (6), the origin of the DCNN in (5) is
globally asymptotically stable for any delay satisfying 0 < 7(t) < h,7(t) < p if
there exist matrices P = PT > 0, Q = QT > 0,N1, No, Ny, and diagonal
matrices S >0, H >0, U >0, N3 > 0 such that the following LMIs hold:

~

1 P12 &\)13 D14 P15 Pis

1
¥ g o3 Dyg Dos Do
| * * P P Py Py | (25)
£ * * (1)44 (1)45 (I)46
* * * x  Pry Psg
i % k * * % (I)66 N
:
P11 Pig
U= >0 26
| Pf; P22 - ( )

where

$,,=—PA— AP+ P, — N, — NT,

$19= N, — Nf, &3 = PB+ Py + HY,

B4 = PB; — NI, ®15= Ny, ®;6 = —hATQ,

P2 = —(1 — p)P11 + NI + Na, D03 = NY,
Pos=—-(1—-p)Pr2+ UL + N{, ®35 = Ny, &6 =0,
‘}:\)33 =SB+ BTS + Poy — 28AY "1 —2H — 2N32_1,
P34 =SBy, @35 = N3, @36 = hBTQ,

Qg = —(1 — p)Poz — 2U, By45 = Ny, D46 = hBTQ,
D55 = —Q, P56 =0, Pes = —Q,

Y = diag(01,09,...,0,) and * denotes the corresponding transposed block matriz
due to symmetry.

Remark 3. The upper bound of the derivative of the delay p is assumed to be
less than one in [3], [20], [24] while our results are also applicable when p > 1
due to the introducing of the matrices Ny and U.

Next, we will consider the DCNN with uncertain parameters:

£(t) = —Az(t) + Bf (z(t)) + Bif(z(t — 7(2))) (27)
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where A = A+ AA(t), B = B+ AB(t), By = B; + AB;(t), the perturbed
AA(t), AB(t), AB:(t) are time-varying uncertain matrices satisfying

AA(t) = M Fi(t)Na (28)
AB(t) = MyF»(t)Np (29)
AB(t) = M3F3(t)Np, (30)

where {M;}?_,, Na, Np, Np, are some given constant matrices, F;(t) are un-
known real matrices satisfying

FIO)F(t) <I, Yt>0,i=1,2,3 (31)
The following lemma will be used to derive the result for uncertain DCNN.

Lemma 2. Let U,V,W and M be real matrices of appropriate dimensions with
M satisfying M = MT, then

M+UVW +WTVTUT <0, forall VIV <I,
if and only if there exists a scalar € > 0 such that

M+e'uUT +eWTw < 0.

Now, we have the following result. It is easy to derived from Lemma 2 and
Corollary 1.

Theorem 2. The origin of the uncertain DCNN in (27) is globally asymptotically
stable for all admissible uncertainties and any time-delay satisfying 0 < 7(t) <
h, 7(t) < p if there exist matrices P = PT > 0, Q = QT > 0,N;, N2, Ny,
diagonal matrices S >0, H >0, U >0, N3 >0, scalarse; >0, g9 >0, 3 >0,
and €4 > 0, such that the following LMIs conditions hold:

[ & A
II= [ AT © ] <0 (32)
Pi; Pis
= >
v [ PL Py } >0 (33)

where

& = (®;),4,j=1,...,6.

$), = ‘I)u + €1N4 NA, ‘I’12 = P9,

@13 = &3, ‘1’14 SE ‘1’15 = P35, <I)16 = P15,

@22 = Poo, @23 = Py3, Doy = Bog, Bos = P,

@96 = ‘1)2(,, ‘1)33 = (1)33 + €2NBNB + 427 TNENAZ 1
@34 = (1’34, D5 = D35, ‘1’36 = P36,

Dy = Dyy + EJNB Np,, ‘134 = ®y5, Py = Pus,

By = D5, a6 = Bg, Do = oo,
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[ —PM, PM, PM; 0
0 0 0 0
Ao 0 SM, SMs  SM,
0 0 0 0 ’
0 0 0 0
| —hQTMy hQTM, hQTM; O

© = diag(—e1l —eal —e3l —e4l).

Proof. By corollary 1, the uncertain DCNN (27) is global asymptotically stable

if the following LMIs hold:

®+AP<0 (34)
Pi1 P2
U = >0 35
ERSE %9
where
[ —2PAA 0
* 0
AD — * *
% %
% b3
i * *
0 0 0 —hAATQ |
0 0 0 0
2SAB — 2SAAL"! SAB, 0 hABTQ (36)
* 0 0 hABTQ
* * 0 0
* * * 0 |
On the other hand, by lemma 2, one has
AP = T F (t)E1 -+ E’{FlT(t)TiF + TQFQ(t)EQ
+ELFF)YT + T3 F3(t)=E3 +EFFT () YT
+T4F1(t)54 + EZFiT(t)TZ
< 51‘11‘1'1"{ + 815{51 + {-,‘Q_ITQT; + 825%152
+e3 ' LaYE + 3B =y + ety YT
+€4E’£E4 (37)

where
Ti=[-M{P 0 0 0 0 —-hMTQ]",
=1=[N4a 0000 0],
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[
[
Ts=[MIP 0 MIS 0 0 nM{Q]",
[0 0 0 Ng, 0 0],

[
E4=[0 0 NaZ7' 0 0 0].

Then, a;pvplying Schur complement lemma to (37), conditions (34) and (32) are
equivalent, This completes the proof. a

4. Examples

In this section, three examples are provided to demonstrate the validity of
these new stability criterions.

Example 1. ([12],[16],[19]) Consider the forth-order DCNN with the following
parameters:

[ 1.2769 0 0 0
A~ 0 0.6231 0 0
0 0 0.9230 0
|0 0 0 0.4480
[ —0.0373 0.4852 —0.3351 0.2336
g | —1.6033 05988 —03224 1.2352
0.3394 —0.0860 —0.3824 —0.5785
| —0.1311 0.3253 —0.9534 —0.5015
0.8674 —1.2405 —0.5325 0.0220
B = 0.0474 —-0.9164 0.0360 0.9816

1.8495  2.6117 —0.3788 0.8428
—2.0413 0.5179  1.1734 -0.2775

In this example we suppose that

o1 = 0.1137 o2 = 0.127903 = 0.7994 o4 = 0.2386

For this DCNN, it can be checked that the asymptotic stability conditions
Theorem 1 in [19], Theorem 1 in [2] and Theorem 2 in [13] are not satisfied.
Therefore, they fail to conclude whether this delay system is asymptotically stable
or not. If we use Theorem 2 in [19], Theorem 1 in [16] and Theorem 1 in [12],
we can calculate the upper bound of a constant delay, h, are 1.4224,1.9231 and
3.5841, respectively, while in this paper, Theorem 1 yields a larger h = 161.4906.
when h = 30, We can obtain the solutions as follows :

78.2668 —16.3744 —8.2658 1.1349

- —16.3744  13.4131 0.1364  —3.3490
—8.2658 0.1364 46.4084  6.4431
1.1349 —-3.3490  6.4431 5.0694

P =
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58.0944 0 0 0
oo 0  169.6731 0O 0
0 0 1.6585 0
0 0 0 31.1488
C 66.4113 —13.8309 —5.3006 2.2119
p, — | ~138309 81706 43563 —2.3350
~5.3006 —4.3563 30.1048  2.8668
| 22119 —2.3356  2.8668  1.8479
[ —0.9012 —3.9157 9.2368  7.9518
P, | 22743 -7.9543 —20684 —85582
~24.6333 —2.5832 —2.7152 28.3621
| —3.0023 24648  3.1584  4.2401
[ 387.8438  178.2290 —65.9394 —9.2152
p,, — | 1782290 ©557.4651 —3.0665 50.6310
~65.9394 —3.0665 42.7247  12.5003
| —9.2152  50.6310 125003  103.3454
" 0.1087 —0.0572 —0.0906 —0.1539
Ny = | 00623 00135 —0.0744 —0.0015
0.3635 —0.0209 —0.4791 =0.1862
0.0066 —0.0140 —0.0180 —0.0211
T —0.0449 0.0154  0.0468 —0.0507
N, = | 01219 —0.0525 . —0.1837 —0.0060
—0.3797 0.1632  0.4586  0.2234
| 0.0029 0.0033 —0.0006 —0.0192
[ 24035 0 0 0
Ny = 0 07466 0 0
0 0 02159 0
0 0 0  0.2776
474234 0 0 0
e 0  37.5683 0 0
0 0 322447 0
0 0 0 18.7876
—0.1236  0.0253 —0.0185  0.5602
No— | —0-5701 04997  1.3126  0.6231

0.2635 —-0.1630 —0.1275 —0.4786
—-0.9764  0.0873 1.2899 0.2441

0.0485 —0.0124 —-0.0155 —0.0031

0= —0.0124  0.0104 0.0033 0.0002
“|' =0.0155 0.0033 0.0260 0.0070
=0.0031  0.0002 0.0070 0.0077

593
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77.2179 0 0 0
U= 0 93.1918 0 0
0 0 13.4023 0

0 0 0 17.0531

Example 2. ([12],[19],[21]) Consider the delayed neural network (5) with

4.1989 0 0
A= 0 0.7160 0

0 0 1.9985
B=0 o .
-0.1052 —0.5069 —0.1121
By = | —0.0257 —0.2808  0.0212

0.1205 —0.2153 0.1315

We suppose that
o1 = 0.4219 o2 = 3.8993 o3 = 1.0160

The obtained upper bounds of a constant delay, h, which ensures that the sys-
tem is asymptotically stable in [19], [21] and [12] are 1.7484,1.7644 and 2.1423,
respectively. On the contrary, Theorem 1 yield a larger h = 61. Obviously it’s
much larger than the previous results. When u > 1, we can obtain the upper
bound of h = 1.5021 by Theorem 1, while in [12] it is h = 0.8969, which is 40.29%
smaller than that obtained by our method. This shows that the condition given
in Theorem 1 is less conservative.

Example 3. Consider the second-order uncertain DCNN (27) with the following

parameters:
14 0O 1.1 1
A_{O 1.1}’3—[—0.2 0.1]’

Blz{ 0.9 0'1},M1=[—0'2 0.2],

-0.1 0.1 02 0.2
02 05 ~0.4 0.3
MZ‘[O.I —0.3}’M3:[ 0.3 0.4]’

Ni= M, Ng= M, Ng, = Ms, u=0.4.

We choose 01 = 0.5, o2 = 0.5. It can be checked that Theorem 1 in [24] is not
satisfied. It means that it fails to conclude whether this system is asymptotically
stable or not. On the contrary, the obtained upper bound of & , which ensures
that the system is global asymptotically stable is h = 1.1241 by Theorem 2 in
this letter, which is much larger than i = 0.5436 by Theorem 1 in [3]. This also
shows that our criterion is less conservative.

5. Conclusion
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In this paper, the problem of global asymptotical stability has been considered

for DCNNs and DCNNs with uncertainties. A new Lyapunov-Krasovskii func-
tion was introduced to derive the stability results. Delay-dependent sufficient
conditions had been derived in terms of LMIs. Illustrative examples had been
included to show the effectiveness of the results.
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