• Title/Summary/Keyword: Lyapunov matrix equations

Search Result 17, Processing Time 0.022 seconds

The Interpretation Stability Uncertain Bound for the Uncertain Linear Systems via Lyapunov Equations (Lyapunov 방정식을 이용한 불확실한 선형 시스템의 안정한 섭동 유계 해석)

  • Cho, Do-Hyeoun;Lee, Sang-Hun;Lee, Jong-Yong
    • 전자공학회논문지 IE
    • /
    • v.44 no.4
    • /
    • pp.26-29
    • /
    • 2007
  • In this paper, we use Lyapunov equations and functions to consider the linear systems with perturbed system matrices. And we consider that what choice of Lyapunov function V would allow the largest perturbation and still guarantee that V is negative definite. We find that this is determined by testing for the existence of solutions to a related quadratic equation with matrix coefficients and unknowns the matrix Riccati equation.

Linear Quadratic Regulators with Two-point Boundary Riccati Equations (양단 경계 조건이 있는 리카티 식을 가진 선형 레규레이터)

  • Kwon, Wook-Hyun
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.16 no.5
    • /
    • pp.18-26
    • /
    • 1979
  • This paper extends some well-known system theories on algebraic matrix Lyapunov and Riccati equations. These extended results contain two point boundary conditions in matrix differential equations and include conventional results as special cases. Necessary and sufficient conditions are derived under which linear systems are stabilizable with feedback gains derived from periodic two-point boundary matrix differential equations. An iterative computation method for two-point boundary differential Riccati equations is given with an initial guess method. The results in this paper are related to periodic feedback controls and also to the quadratic cost problem with a discrete state penalty.

  • PDF

Stability of Switched Linear Systems Using Upper Bounds of Solutions of Lyapunov Matrix Equations (리야프노프 행렬 방정식의 해를 이용한 스위칭 선형시스템의 안정화)

  • Yeom, Dang-Hae;Choi, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.20-22
    • /
    • 2005
  • In this paper, we propose a novel stability criterion for switched linear systems. The proposed method employs the results on the upper bound of the solution of LME(Lyapunov Matrix Equation) and on the stability of hybrid system. The former guarantees the existence of Lyapunov-like energy functions and the latter shows that the stability of switched linear systems by using these energy functions. The proposed criterion releases the restriction on the stability of switched linear systems comparing with the existing methods and provides us with easy implementation way for pole assignment.

  • PDF

The Interpretation Uncertain Bound for the Uncertain Linear Systems via Lyapunov Equations (Lyapunov 방정식을 이용한 불확실한 선형 시스템의 섭동 유계 해석)

  • Cho, Do-Hyoun;Lee, Sang-Chul;Choi, Jin-Taik;Lee, Sang-Hun;Lee, Jong-Yong
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.485-486
    • /
    • 2007
  • In this paper, we use Lyapunov equations and functions to consider the linear systems with perturbed system matrices. And we consider that what choice of Lyapunov function V would allow the largest perturbation and still guarantee that V is negative definite. We find that this is determined by testing for the existence of solutions to a related quadratic equation with matrix coefficients and unknowns the so-called matrix Riccati equation.

  • PDF

GLOBAL STABILITY ANALYSIS FOR A CLASS OF COHEN-GROSSBERG NEURAL NETWORK MODELS

  • Guo, Yingxin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.6
    • /
    • pp.1193-1198
    • /
    • 2012
  • By constructing suitable Lyapunov functionals and combining with matrix inequality technique, a new simple sufficient condition is presented for the global asymptotic stability of the Cohen-Grossberg neural network models. The condition contains and improves some of the previous results in the earlier references.

GLOBAL ROBUST STABILITY OF TIME-DELAY SYSTEMS WITH DISCONTINUOUS ACTIVATION FUNCTIONS UNDER POLYTOPIC PARAMETER UNCERTAINTIES

  • Wang, Zengyun;Huang, Lihong;Zuo, Yi;Zhang, Lingling
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.89-102
    • /
    • 2010
  • This paper concerns the problem of global robust stability of a time-delay discontinuous system with a positive-defined connection matrix under polytopic-type uncertainty. In order to give the stability condition, we firstly address the existence of solution and equilibrium point based on the properties of M-matrix, Lyapunov-like approach and the theories of differential equations with discontinuous right-hand side as introduced by Filippov. Second, we give the delay-independent and delay-dependent stability condition in terms of linear matrix inequalities (LMIs), and based on Lyapunov function and the properties of the convex sets. One numerical example demonstrate the validity of the proposed criteria.

Robust stability of linear system with unstructured uncertainty (비구조적인 불확정성을 갖는 선형시스템의 강인 안정성)

  • 김진훈;변증남
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.52-54
    • /
    • 1991
  • In this paper, the robust stability, and the quadratic performance of linear uncertain systems are studied. A quadratic Lyapunov function candidate with time-varying matrix is derived to provide robust stability bounds. Also upper bounds of a quadratic performance is given under the assumption that the uncertain system is stable. Both the robust stability bounds and the upper bounds of a quadratic performance are obtained as solutions of a class of modified Lyapunov equations.

  • PDF

A New Stability Criterion of a Class of Neutral Differential Equations (뉴트럴 미분방정식의 새로운 안정성 판별법)

  • Kwon, Oh-Min;Park, Ju-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.11
    • /
    • pp.2023-2026
    • /
    • 2007
  • In this letter, the problem for a class of neutral differential equation is considered. Based on the Lyapunov method, a stability criterion, which is delay-dependent on both ${\tau}\;and\;{\sigma}$, is derived in terms of linear matrix inequality (LMI). Two numerical examples are carried out to support the effectiveness of the proposed method.

Adaptive control for two-link flexible robot arm (2-링크 유연한 로보트 팔에 대한 적응제어)

  • 한종길;유병국;임규만;함운철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.8-13
    • /
    • 1993
  • This paper presents deterministic and adaptive control laws for two-link flexible arm. The flexible arm has considerable structural flexibility. Because of its flexbility, dynamic equations are very complex and difficult to get, dynamic equations for two-link flexible arm are derived from Bernoulli-Euler beam theory and Lagrangian equation. Using the fact that matrix is skew symmetric, controllers which have a simplified structure with less computational burden are proposed by using Lyapunov stability theory.

  • PDF