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GLOBAL STABILITY ANALYSIS FOR A CLASS OF

COHEN-GROSSBERG NEURAL NETWORK MODELS

Yingxin Guo

Abstract. By constructing suitable Lyapunov functionals and combin-
ing with matrix inequality technique, a new simple sufficient condition
is presented for the global asymptotic stability of the Cohen-Grossberg

neural network models. The condition contains and improves some of the
previous results in the earlier references.

1. Introduction

In this paper, we are concerned with the model of continuous-time neural
networks described by the following systems of the form:

x′
i(t) = ci(xi(t))

[
− di(xi(t)) +

n∑
j=1

aijfj(xj(t)) +

n∑
j=1

bijfj(xj(t− τj(t))) + Ji

]
,

(1)

i = 1, 2, . . . , n,

or equivalently

(2) x′(t) = C(x(t))[−D(x(t)) +Af(x(t)) +Bf(x(t− τ(t))) + J ],

where n denotes the number of the neurons in the network, xi(t) is the state
of the ith neuron at time t, x(t) = (x1(t), x2(t), . . . , xn(t))

T ∈ Rn, f(x(t)) =
(f1(x1(t)), f2(x2(t)), . . . , fn(xn(t)))

T ∈ Rn denote the activation functions of
the jth neuron at time t, C(x(t)) = diag(c1(x1(t)), c2(x2(t)), . . . , cn(xn(t))) >
0, D(x(t)) = diag(d1(x1(t)), d2(x2(t)), . . . , dn(xn(t))) > 0, A = (aij)n×n, B =
(bij)n×n are the feedback matrix and the delayed feedback matrix, respectively,
J = (J1, J2, . . . , Jn)

T ∈ Rn be a constant external input vector, the time
delay τ(t) is any nonnegative continuous function with 0 ≤ τj(t) ≤ τ, and
0 < τ ′j(t) ≤ δ < 1, where τ , δ are constants.
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System (1) is one of the most popular and generic neural network mod-
els. The Cohen-Grossberg neural network models were firstly proposed and
studied by Cohen and Grossberg [6], which have been widely applied in vari-
ous engineering and scientific fields such as neural-biology, population biology,
and computing technology. In such applications, it is important to know the
convergence properties of the designed neural networks. Usually, this kind of
neural networks can be described by the system (1).

In hardware implementation, however, time delays occur due to finite switch-
ing speed of the amplifier and communication time [5]. And time delays may
lead to oscillation, divergence, or instability, which may be harmful to the sys-
tems [2, 13]. On the other hand, it has also been shown that the process of
moving images required the introduction of delay in signal transmission through
the networks [15]. The stability of dynamical neural networks with time de-
lay which have been used in many applications such as optimization, control
and image processing, has received much attention recently (see, for example
[1, 3, 4, 7, 9, 10, 11]).

During the past several years, considerable attention has been paid to the
delay-dependent stability and control problems of linear neutral systems. Many
efforts have been made to obtain less conservative delay-dependent conditions.
One important index of measuring the conservatism of the conditions obtained
is the maximum allowable upper bound on the delay. Delay dependent condi-
tions via Lyapunov functionals are often based on a fixed model transformation
technique that rewrites the delayed term via integration. By transforming the
original system into a distributed-delay system, a Lyapunov-Krasovskii func-
tional is constructed for the distributed-delay system As mentioned previously,
it is often the case in practice that the network parameters may contain un-
certainties due to modeling errors, and the neural network is disturbed by
environmental noises that affect the stability of the equilibrium.

In this paper, we will consider the global asymptotic stability of the Cohen-
Grossberg neural networks with distributed delays described by (1). The or-
ganization of this paper is as follows. In Section 2, problem formulation and
preliminaries are given. In Section 3, some new results are given to the Cohen-
Grossberg neural networks with distributed delays described by (1) based on
Lyapunov method. Section 4 gives an example to illustrate the effectiveness of
our results.

2. Preliminaries and lemmas

In our analysis, we assume that the following conditions are satisfied

(H1) There exist constant scalers li > 0 such that

0 ≤ fi(η1)− fi(η2)

η1 − η2
≤ li, ∀ η1, η2 ∈ R, η1 ̸= η2;

(H2) ci(xi(t)) > 0, ci are bounded, i = 1, 2, . . . , n;
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(H3) For all η1, η2 ∈ R, η1 ̸= η2, there exist constant scalers µi > 0 such that

di(η1)− di(η2)

η1 − η2
≥ µi > 0.

The initial conditions associated with system (1) are of the form

xi(s) = ϕi(s), s ∈ [−τ, 0], i = 1, 2, . . . , n,

in which ϕi(s) are bounded and continuous for s ∈ [−τ, 0].
In the following, we will use the notation A > 0 (or A < 0) to denote the

matrix A is a symmetric and positive definite (or negative definite) matrix.
The notation AT and A−1 means the transpose of and the inverse of a square
matrix A.

In order to obtain our result, we need establishing the following lemma.

Lemma 1. For any vectors a, b ∈ Rn, the inequality

2aT b ≤ εaTa+
1

ε
bT b

holds for ∀ ε > 0.

Assume x∗ = (x∗
1, x

∗
2, . . . , x

∗
n)

T is an equilibrium of Eq.(1), one can derive
from (1) that the transformation yi(t) = xi(t) − x∗

i transforms system (1) or
(2) into the following system:

(3) y′i(t) = αi(yi(t))
[
− βi(yi(t)) +

n∑
j=1

aijgj(yj(t)) +
n∑

j=1

bijgj(yj(t− τj(t)))
]

for i = 1, 2, . . . , n. Where

αi(yi(t)) = ci(yi(t) + x∗
i ),

βi(yi(t)) = di(yi(t) + x∗
i )− di(x

∗
i ),

gj(yj(t)) = fj(yj(t) + x∗
j )− fj(x

∗
j ).

Note that since each function fj(·) satisfies the hypothesis (H1), hence, each
gj(·) satisfies

0 ≤ gj(yj)

yj
≤ lj , ∀ yj ∈ R, yj ̸= 0, and gj(0) = 0, j = 1, 2, . . . , n

and since each function dj(·) satisfies the hypothesis (H3), hence, each βj(·)
satisfies

βj(yj)

yj
≥ µj > 0, ∀ yj ∈ R, yj ̸= 0, and βj(0) = 0, j = 1, 2, . . . , n.

To prove the stability of x∗ of Eq.(1), it is sufficient to prove the stability of
the trivial solution of Eq.(3).
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3. Stability analysis

In the section, we present and prove our main results.

Theorem 1. Assume that (H1)-(H3) are satisfied and there exists a positive
diagonal matrix M such that

−2l−1µM +MA+ATM +
1

1− δ
MBBTM + E < 0,

where E denotes the identity matrix of size n, M=diag(mi)n×n, l=diag(li)n×n,
µ = diag(µi)n×n. Then the equilibrium point of system (1) is globally asymp-
totically stable.

Proof. Consider the following positive definite Lyapunov function defined by:

V (yt) = 2
n∑

i=1

mi

∫ yi(t)

0

gi(s)

αi(s)
ds+

n∑
i=1

∫ t

t−τi(t)

g2i (yi(s))ds.

We calculate and estimate the time derivative of V (yt) along the trajectories
of system (3) as follows:

V ′(yt) = 2

n∑
i=1

mi
gi(yi(t))

α(yi(t))
y′i(t) +

n∑
i=1

[g2i (yi(s))− g2i (yi(t− τi(t)))(1− τ ′i(t))]

≤ 2

n∑
i=1

migi(yi(t))
[
− βi(yi(t)) +

n∑
j=1

aijgj(yj(t))

+
n∑

j=1

bijgj(yj(t− τj(t)))
]
+

n∑
i=1

[g2i (yi(s))− g2i (yi(t− τi(t)))(1− τ ′i(t))]

≤ −2
n∑

i=1

migi(yi(t))βi(yi(t)) + 2
n∑

i=1

n∑
j=1

aijmigi(yi(t))gj(yj(t))

+ 2
n∑

i=1

n∑
j=1

bijmigi(yi(t))gj(yj(t− τj(t)))

+
n∑

i=1

[g2i (yi(s))− g2i (yi(t− τi(t)))(1− τ ′i(t))]

≤ −2
n∑

i=1

migi(yi(t))βi(yi(t)) + gT (y(t))(MA+ATM)g(y(t))

+ 2gT (y(t))MBg(y(t− τ)) + gT (y(t))g(y(t))

− (1− δ)gT (y(t− τ))g(y(t− τ)).
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From Lemma 1, we have

2gT (y(t))MBg(y(t− τ)) ≤ 1

1− δ
gT (y(t))MBBTMg(y(t))

+ (1− δ)gT (y(t− τ))g(y(t− τ)).

Then we have

V ′(yt) ≤ −2l−1µgT (y(t))Mg(y(t)) + gT (y(t))(MA+ATM)g(y(t))

+
1

1− δ
gT (y(t))MBBTMg(y(t)) + gT (y(t))g(y(t))

≤ gT (y(t))
(
− 2l−1µM +MA+ATM +

1

1− δ
MBBTM + E

)
g(y(t))

< 0.

The proof is complete. □

When the delayed feedback matrix B = 0 in Theorem 1, we can easily obtain
the following corollary.

Corollary 1. The equilibrium point of Eq.(1) is globally asymptotically stable
if there exists a positive diagonal matrix M such that

−2l−1µM +MA+ATM + E < 0.

Remark. In Theorem 1 and Corollary 1, we do not need the assumptions of
boundedness, monotonicity, and differentiability for the activation functions,
moreover, the model discussed is with time-varying delays. Clearly, the pro-
posed results are different from those in [2, 5, 6, 8, 12, 13, 14, 15] and the
references cited therein. Therefore, the results of this paper are new and they
complement previously known results.

4. An example

In this section, an example is used to demonstrate that the method presented
in this paper is effective.

Example. Consider the following two state neural networks:

A = (aij)2×2 =

(
−2 0.5
0.5 −2

)
,

B = (bij)2×2 =

(
0.5 0.5
−0.5 −0.5

)
,

and we take l = µ = E, δ = 0.5. Let M = E. Then we have

−2l−1µM +MA+ATM +
1

1− δ
MBBTMT + E =

(
−3 0
0 −3

)
< 0.

Therefore, by Theorem 1, the equilibrium point of Eq.(1) is globally asymptot-
ically stable.
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