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Stability of Switched Linear Systems Using Upper Bounds of Solutions of
Lyapunov Matrix Equations

g, FAGwr
Dong Hae Yeom, Jin Young Choi

Abstract - In this paper, we propose a novel stability criterion for switched linear systems. The proposed method
employs the results on the upper bound of the solution of LME(Lyapunov Matrix Equation) and on the stability of
hybrid system. The former guarantees the existence of Lyapunov-like energy functions and the latter shows that the
stability of switched linear systems by using these energy functions. The proposed criterion releases the restriction on
the stability of switched linear systems comparing with the existing methods and provides us with easy implementation

way for pole assignment.
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1. Introduction

In recent years, the stability of switched systems has
received growing attention. A switched system is defined
as a family of subsystems that is converted to another
subsystem according to switching signals. Especially, when
each subsystem is linear, an overall system is called a
switched linear system. The widespread application of such
systems is motivated by the fact that high performance
control systems can be realized by switching between
relatively simple LTI systems. But even if all subsystems
are linear, the overall system may not necessarily be
linear because the systermn has discontinuities at each
switching instants. This means that general stability
criterion and controller design methods for linear systems
are no longer acceptable because the stability of switched
linear systems can not be guaranteed even when each
subsystem is stable [5].

One of representative results on switched linear systems
is that if all eigenvalues of the sum of each system
matrix and its transpose are less than zero, there exists a
common Lyapunov function for such switched linear
system (4], This requirement however is so hard to
achieve that applicable systems are very limited. In this
paper, we propose a new stability criterion which is less
restrictive than the existing one. The proposed method
employs the recent results on the upper bound of the
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solution of Lyapunov matrix eguation [9] and on the
stability of hvbrid systems [10].

2. Stability of Hybrid Systems

There are several results in the literature using
Lyapunov theory to show stability for hybrid systems.
Most of them show the stability of hybrid systems
through muitiple have decreasing
values at consecutive switching instances and are well
defined on each switching interval, which means that time
derivatives of each Lyapunov function should be negative

definite so as to decrease the energy functions on each

Lyapunov functions

interval. In general, this is very severe reguirement. On
the other hand, some results which need not
requirement are reported in the work by Ye, Michel and
Hou [10].

The stability result in {10] is very general in the sense
that it can be applied to different types of systems. A
Lyapunov function introduced which
if the sequence of values of the
Lyapunov function times  is
non-increasing and the energy between these times is

such

discontinuous is
guarantees stability

at consecutive switching

bounded by a continuous function which is zero at the
origin. Asymptotic stability is guaranteed by requiring the
sequence of values the Lyapunov function at
consecutive switching time to be decreasing. In this case,

of

the energy function does not need to decrease on each
switching interval contrary to other traditional stability
results.

The that

stability result mentioned above requires



values of the Lyapunov like functions decrease at each
switching instance. However, we propose a modified
stability result which requires that maximum values of
energy functions
intervals

decreases in consecutive
instead of decreasing of values
functions at switching instances.

Theorem 1. Let M C/ be a set of equilibrium points
and define metric d(x,M) as the distance between the
current state and M . Assume that there exist a energy
function ¥ : X xR* > R*and 4, ¢ € classk defined on R*

such that
$(d(x, M) <V (x,1) < §,(d(x,M)) (1)

for all xe X,teR*, which satisfies

switching
of energy

i) For all motions of trajectories x(¢,a,5,)€ S, V(x(t,a,4,),t)

is continuous except on switching instances {#,f, -},
where a,t, denote the initial state and initial time,
respectively.
iy V(x(t,,a,4).¢,) is non-increasing for n=1,2,
iii) There exists a continuous function £() such that
g(0)=0,
V(x(ta.1,).0) < g(V(x(t,.a,,),1,)) @

for ¢ E(’,,,t,,.l), where /., denotes an instance when each
energy function has the maximum value on corresponding
switching intervals. Then, the motions of trajectories are
uniformly stable.

iv) In addition, there exists # € K such that

[V(x(t,,+,,a,t(,),tm) - V(x(t”,a,t(,),t"):]

tn+l - l"
<-¢ (d(x(t",a,to),M)) (3)
Then, the motions of trajectories are uniformly

asymptotically stable (The proof is omitted by limitation of
space).

3. Energy Functions

In this section, we build a energy function which satisfy
the requirements in Theorem 1. To do this, we use results
on the upper bound of the solution of LME (Lyapunov
Matrix Equations). Considerable research efforts have been
devoted to finding the upper bound of the solution of
LME, A'P+PA+Q=0, where Ais a given matrix and
especially O is a positive definite matrix.

Theorem 2. Under the assumptions of Proposition 3.1 in
[9], suppose that

fxfsnx™
Let P=X"PX >0 ,where X denotes the conjugate transpose
of X and AX = XA with A =diag({4})}. Then

Hﬁ” = 2min }LQ[”—A(A)] K(X)

(The proof is omitted by space limitation).
Trivially, we can obtain that if K (X)/(2minRe[-A(4)])<1,

then H13|I<|IQ]|. By using this result, Lyapunov like
energy functions can be designed recursively.

4. Stability of Switched Linear Systems
In this section, we show asymptotic stability of
switched linear systems under an arbitrary switching
signal by combining the results of Section 2 and 3. In
general, hybrid
{R*, X, 1,8} as shown in Section 2, where metric space
X includes Another

representation of hybrid systems is given in state space
form as

systems can be represented by

continuous and discrete spaces.

X=R"xN (4)

where xe R" and o €N denote  continuous  variable and
discrete variable, respectively. Switched linear systems are
a subset of hybrid systems. So, such systems can be
represented in hybrid manner as

x=Fx+Bu,

u=K x,

ok +1)= h(x,0(k)), (5)

where o ={1,2,--} denotes the index of subsystem.
Replacing with state feedback, K,¥, in the above system

yields

xX=Ax,
olk +1)= h(x,0(k)), (6)

where A, =F, + B,K_={4,4,,} . Therefore, all results in
Section 2 and 3 are applicable to switched linear systems.
Theorem 3. If the system matrix 4, of each subsystem
satisfies
fxnsnxty

K(r)

2minRe[—A(Aa):| , (7
then the origin of the family of such linear systems is
globally asymptotically stable under an arbitrary switching
signal (The proof is omitted by space limitation).

5. Nlustrative Example

Consider a switched linear system as follows
i=Fx+Bu,
u=Kx,
a(k+1)= h(x, a(k)) R
where A(") is a mapping that determines which subsystem

is activated next. For example, a switched linear system is
given as following a family of linear systems.
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Assign poles of each subsystem as follows
p={-3%j4}, b= {-2+ 3},
py={-41% j4}, p,={-21j5}

Then, the resulting closed-loop subsystems are

-9 -17.3333 -7 -85
A] = 5 Az = >
3 3 3

4
4 3 2 3
A3 = s A4 =
~26.6667 -12 ~13.6667 -6{j -
The norms of diagonalizing matrices of each subsystem
are
X, {|=1.3854,]| X, [I=1.3701, || X, |l=1.4011, || X, |=1.3416,

NX7 1=3.5212, || X (1= 2.8544, 1| X" [|=5.1956, || X" ||= 2.2361.

So, the assumption is satisfied. The condition numbers of
diagonalizing matrices of each subsystem are

K(X,)= 48737, K(X,)=3.9110, K (X;)=7.2793, K (X,)=3

Each condition number dose not exceed 2minRe[-A(4,)].
Therefore, we can say that the switched linear system
under an arbitrary is asymptotically

switching signal

stable as shown in the below figure.

/
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Fig. Converging trajectory under an arbitrary switching
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