HCI, 비전 기반 사용자 인터페이스 또는 제스쳐 인식과 같은 많은 분야에서 3 차원 얼굴 모션을 추정하는 것은 중요한 작업이다. 연속된 2 차원 이미지로부터 3 차원 모션을 추정하기 위한 방법으로는 크게 외형 기반 방법이나 모델을 이용하는 방법이 있다. 본 연구에서는 동영상으로부터 3 차원 실린더 모델과 Optical flow를 이용하여 실시간으로 얼굴 모션을 추정하는 방법을 제안하고자 한다. 초기 프레임으로부터 얼굴의 피부색과 템플릿 매칭을 이용하여 얼굴 영역을 검출하고 검출된 얼굴 영역에 3 차원 실린더 모델을 투영하게 된다. 연속된 프레임으로 부터 Lucas-Kanade 의 Optical flow 를 이용하여 얼굴 모션을 추정한다. 정확한 얼굴 모션 추정을 하기 위해 IRLS 방법을 이용하여 각 픽셀에 대한 가중치를 설정하게 된다. 또한, 동적 템플릿을 이용해 오랫동안 정확한 얼굴 모션 추정하는 방법을 제안한다.
This paper proposes a novel localization algorithm based on ego-motion which used Lucas-Kanade Optical Flow and warping image obtained through fish-eye lenses mounted on the robots. The omnidirectional image sensor is a desirable sensor for real-time view-based recognition of a robot because the all information around the robot can be obtained simultaneously. The preprocessing (distortion correction, image merge, etc.) of the omnidirectional image which obtained by camera using reflect in mirror or by connection of multiple camera images is essential because it is difficult to obtain information from the original image. The core of the proposed algorithm may be summarized as follows: First, we capture instantaneous $360^{\circ}$ panoramic images around a robot through fish-eye lenses which are mounted in the bottom direction. Second, we extract motion vectors using Lucas-Kanade Optical Flow in preprocessed image. Third, we estimate the robot position and angle using ego-motion method which used direction of vector and vanishing point obtained by RANSAC. We confirmed the reliability of localization algorithm using ego-motion based on fisheye warping image through comparison between results (position and angle) of the experiment obtained using the proposed algorithm and results of the experiment measured from Global Vision Localization System.
본 연구에서는 스트랩 다운 영상 탐색기를 활용한 유도무기와 목표물 사이의 관측각을 효과적으로 추적할 수 있는 연구를 수행하였고 이를 시각적으로 시뮬레이션 가능한 테스트 베드를 구축하였다. 영상 정보를 이용하여 목표물 추적을 위한 Lucas Kanade의 Optical flow 알고리즘과 같은 희박 특징점 추적 알고리즘 구현 시 고성능의 특징점 분포를 유지시키는 법을 기술하였으며, 특징점 추적 문제를 특징점 관리의 개념으로 확장하여 연구하였다. 이를 구현하기 위해 Unity3D 엔진을 이용하여 시각 환경을 구성하고 OpenCV를 이용하여 영상 처리 시뮬레이션을 개발하였다. 상호-시뮬레이션을 위해 매틀랩(Matlab) 시뮬링크(Simulink)로 동적 시스템 모델링을 하였고, Unity3D를 이용한 시각 환경을 구성, OpenCV를 이용한 컴퓨터 비전 작업을 수행하였다.
Lee InBum;Choi ByungHun;Kim SangSik;Park Kwang Suk
대한의용생체공학회:의공학회지
/
제26권3호
/
pp.133-138
/
2005
This paper presents a new method for measuring ocular torsion using the optical flow. Images of the iris were cropped and transformed into rectangular images that were orientation invariant. Feature points of the iris region were selected from a reference and a target image, and the shift of each feature was calculated using the iterative Lucas-Kanade method. The feature points were selected according to the strength of the corners on the iris image. The accuracy of the algorithm was tested using printed eye images. In these images, torsion was measured with $0.15^{\circ}$ precision. The proposed method shows robustness even with the gaze directional changes and pupillary reflex environment of real-time processing.
본 연구는 칼라기반에서 단일 이동객체 추적을 다루고 있다. 우선 매 영상에서 이동객체 영상의 밝기 변화에 따른 추적 약점을 개선하기 위해 기존의 Camshift 알고리즘을 보완하였다. 보완된 알고리즘도 추적중인 물체와 색상이 같은 주변 물체가 존재할 경우 불안정한 추적을 보여주었는데 본 연구에서는 이를 해결하기 위해 Optical Flow기반의 KLT 알고리즘과 병합하는 방법을 제시하였다. 픽셀기반의 특징점 추적을 수행하는 KLT 알고리즘은 칼라기반의 Camshift의 단점을 보완할 수 있다. 실험 결과 제안된 병합 방법은 기존의 추적단점을 보완하였으며 추적성능이 개선됨을 실험으로 확인하였다.
오늘날 지능형 영상 검지기 시스템(Intelligent Vehicle Detection System)이 추구하는 방향은 기존 시스템의 교통 소통 정보 습득을 넘어서 교통정체, 사고 등과 같은 부정적인 요인을 줄이는 것이다. 본 논문에서는 도로 교통법규 위반 상황 중에서 가장 치명적인 사고를 유발 할 수 있는 불법 유턴 차량을 검지하는 알고리즘을 제안한다. 영상의 옵티컬 플로우 벡터(Optical Flow Vector)를 구하고 이 벡터가 불법 유턴 경로 상에 나타난다면 불법 유턴차량에 의해 생긴 벡터일 확률이 높을 것이라는 점에 착안하여 연구를 진행했다. 옵티컬 플로우 벡터를 구하기 전에 연산량 절감을 위하여 코너(corner)와 같은 특징점을 선지정한 후 그 점들에 대해서만 추적하는 피라미드 루카스-카나데(pyramid Lucas-Kanade) 알고리즘을 사용했다. 이 알고리즘은 연산량이 매우 높기 때문에 먼저 컬러 정보와 진보된 확률적 허프 변환(progressive probabilistic hough transform)으로 중앙선을 검출하고 그 주위 영역에만 적용시켰다. 그리고 검출된 벡터들 중 불법 유턴 경로위의 벡터들을 선별하고 이 벡터들이 불법 유턴 차량에 의해 생긴 벡터들인지 확인하기 위해 신뢰도를 검증하여 불법 유턴 차량을 검지하였다. 최종적으로 알고리즘의 성능을 평가하기 위해 알고리즘별 처리시간을 측정하였으며 본 논문에서 제안한 알고리즘이 효율적임을 증명하였다.
최근 사용 가능한 고해상도 위성 SAR 영상이 다양해지면서, 변화 탐지를 포함한 다양한 분야에서 SAR 영상에 대한 정밀 정합 요구가 높아지고 있다. 다중 관측각 환경에서의 고해상도 SAR 영상간 정합은 SAR 영상의 특성상 발생하는 스펙클 노이즈, 기하 왜곡 등에 의해 어려움이 있다. 본 연구에서는 독일 TerraSAR-X의 staring spotlight 모드로 촬영된 고해상도 SAR 영상을 활용하여, 개략정합 단계와 정밀정합 단계의 2단계에 걸친 영상정합 알고리즘을 제안하였다. 개략정합 단계에서는 적응형 샘플링 기법과 SAR-SIFT(Scale Invariant Feature Transform)를 결합하여 정합을 수행하였고, 정밀정합 단계에서는 3가지의 강성 정합 기법인 NCC(Normalized Cross Correlation), PC (Phase Congruency)-NCC, MI (Mutual Information) 기법과 비강성 정합 기법인 Gefolki (Geoscience extended Flow Optical Flow Lucas-Kanade Iterative)를 적용하여 정합 성능을 비교 분석하였다. 정합 결과는 RMSE (Root Mean Square Error)와 FSIM (Feature Similarity) 지수를 사용하여 정량적인 비교를 수행하였다. 사용한 모든 영상 조합에서 강성정합 기법은 Gefolki 알고리즘에 비해 저조한 정합 성능을 보였다. 강성정합 모델들은 지형기복이 큰 지역에서 정합오차가 크게 발생함을 확인할 수 있었다. Gefolki 알고리즘 적용 결과, RMSE 1~3화소를 보이며 가장 우수한 결과를 확인하였으며, FSIM 지수 또한 다른 기법에 비해 0.02~0.03 이상 높은 값을 취득했다. 다중 관측각 영상에서의 고해상도 SAR 영상 간 정합 성능을 비교하였으며, 강성정합 기법에 비해 Gefolki 알고리즘을 통해 지형효과를 충분히 줄일 수 있음을 확인했다. 이는 추후 변화탐지를 포함한 다양한 분야의 전 처리 과정에 효과적으로 사용될 수 있을 것으로 기대된다.
This paper proposes a global mapping algorithm for multiple robots from an omnidirectional-vision simultaneous localization and mapping (SLAM) approach based on an object extraction method using Lucas-Kanade optical flow motion detection and images obtained through fisheye lenses mounted on robots. The multi-robot mapping algorithm draws a global map by using map data obtained from all of the individual robots. Global mapping takes a long time to process because it exchanges map data from individual robots while searching all areas. An omnidirectional image sensor has many advantages for object detection and mapping because it can measure all information around a robot simultaneously. The process calculations of the correction algorithm are improved over existing methods by correcting only the object's feature points. The proposed algorithm has two steps: first, a local map is created based on an omnidirectional-vision SLAM approach for individual robots. Second, a global map is generated by merging individual maps from multiple robots. The reliability of the proposed mapping algorithm is verified through a comparison of maps based on the proposed algorithm and real maps.
본 논문에서는 드론과 지상 로봇 간 효과적인 협업을 위하여 광학 흐름 기술 기반의 특징점 추적 알고리즘을 제안하였다. 드론의 비행 중 빠른 움직임에 의하여 많은 문제점이 발생하여 지상물체를 성공적으로 인식하기 위해 직관적이면서도 식별자를 가지고 있는 마커를 사용했다. 특징점 추출이 우수한 FAST알고리즘과 움직임 감지가 우수한 루카스-카나데 광학흐름 알고리즘의 장점들을 혼합하여 기존 특징점-특징량 기반 객체 추적 방법보다 개선된 속도의 실험결과를 보여준다. 또한 제안한 마커의 검출방법에 적절한 이진화 방법을 제안하여 주어진 마커에서의 검출 정확도를 개선하였으며, 추적속도는 유사한 환경의 기존연구보다 40% 이상 개선됨을 확인하였다. 또한 비행드론의 경량화와 속도개선에 문제가 없도록 최소형 고성능의 임베디드 환경을 선택하였으며, 제한된 개발환경에서도 물체검출과 추적 등 복잡한 연산이 가능하도록 동작환경에 대하여 연구하였다. 향후에는 다른 환경에서 빠르게 움직이는 두 로봇 간의 협업의 정확도를 향상시키기 위해 지능적 비전기능에 대해 추가할 예정이다.
수치예보모델의 예측 바람장은 대기운동벡터 알고리즘의 표적 추적 과정에서 추적 정확도 향상이나 계산 시간 단축을 위해 초기 추정치로 사용된다. 대기운동벡터는 수치예보모델의 자료동화 시 활용가치가 높다고 알려졌으나, 초기 추정치로 사용된 수치예보모델 바람장이 대기운동벡터의 검증 과정에 참 값으로 사용된다는 모순이 있다. 이를 해결하기 위해서는 수치예보모델로부터 독립적인 초기 추정치가 필요하다. 본 연구에서는 Lucas and Kanade 옵티컬 플로우 방법을 적용하여 바람장을 도출한 후 이를 초기 추정치로 사용함으로써 표적 추적과정에서의 모델 의존성을 제거하고 계산 속도를 향상시키고자 하였다. 대기운동벡터 산출에는 2015년 8월 18일 ~ 9월 5일 00, 06, 12, 18시 동안의 정지궤도 위성 Himawari-8/AHI의 14번 채널 Level 1B 자료를 사용하였다. 옵티컬 플로우 방법이 대기운동벡터 산출에 미치는 영향을 평가하기 위하여 다음과 같은 세가지 방법으로 교차 검증을 수행 하였다. (1) 초기 추정치 없이, (2) KMA/UM 예보바람장을 초기 추정치로 사용하여, 그리고 (3) 옵티컬 플로우 방법으로 계산된 바람장을 초기 추정치로 사용하여 대기운동벡터를 산출하고 ECMWF ERA-Interim 재분석장과 비교 검증한 결과, 옵티컬 플로우 기반 바람장을 초기 추정치로 사용한 경우에 가장 높은 정밀도를 보였다(RMSVD: 5.296-5.804 ms-1). 계산 속도는 초기 추정치를 사용하지 않은 경우에 가장 느렸고, 나머지 테스트는 유사한 속도를 보였다. 그러므로 대기운동벡터 알고리즘의 표적 추적 과정에 옵티컬 플로우 방법을 적용하면, 모델 의존성 없는 고품질 바람벡터의 산출이 가능할 것으로 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.