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This paper proposes a global mapping algorithm    
for multiple robots from an omnidirectional-vision 
simultaneous localization and mapping (SLAM) approach 
based on an object extraction method using Lucas–
Kanade optical flow motion detection and images 
obtained through fisheye lenses mounted on robots. The 
multi-robot mapping algorithm draws a global map by 
using map data obtained from all of the individual robots. 
Global mapping takes a long time to process because it 
exchanges map data from individual robots while 
searching all areas. An omnidirectional image sensor has 
many advantages for object detection and mapping 
because it can measure all information around a robot 
simultaneously. The process calculations of the correction 
algorithm are improved over existing methods by 
correcting only the object’s feature points. The proposed 
algorithm has two steps: first, a local map is created  
based on an omnidirectional-vision SLAM approach for 
individual robots. Second, a global map is generated by 
merging individual maps from multiple robots. The 
reliability of the proposed mapping algorithm is verified 
through a comparison of maps based on the proposed 
algorithm and real maps. 
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I. Introduction 

With rapid advances in robotics, high-performance robots of 
various types have been used in diverse fields. In general, a 
single robot has a practical limitation because it requires high-
performance hardware and software systems to perform a task 
by itself. As a result, using a single robot is difficult in tasks 
such as exploration, object transport, and cleaning. In such 
tasks, using multiple robots that are simple and inexpensive can 
be better than using a single expensive high-performance robot. 
Multiple robots can perform a given task efficiently through 
cooperation, such as exchanging information with one another. 
Multiple robots require various algorithms for avoiding 
collisions between themselves or obstacles and for facilitating 
formation, cooperation, and global mapping, among others 
[1]–[8]. Previous studies have covered such algorithms well. 

A multi-robot mapping algorithm creates a global map by 
using the local maps of individual robots, while maintaining 
their formation. Formation-control refers to the technology that 
enables a group of robots to control the shape of their own 
formation according to the surrounding environment so as to 
enable them to complete their mission. A large number of 
robots change their formation to complete tasks according to 
their purpose and environment based on multiple maps that  
are generated simultaneously. Studies have examined the 
formation and mapping-controlled position of each robot based 
on its location on the global map and its controlled formation 
through the sharing of information on the global location of 
each robot [9]–[11]. Few studies on formation control and 
mapping have proposed methods for creating global maps 
using information on robots and their environments obtained 
through cameras attached to the robots. Previous camera-based 
studies have employed various algorithms. Some studies have 
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detected and controlled the formation of robots using their 
positions on a global map based on barcode information 
attached to the side of each robot or on a cylindrical target on 
top of the robot. Others have controlled robots using 
omnidirectional cameras by estimating the global positions 
based on unmanned aerial vehicle camera data, as well as 
controlling the robot formation by estimating the object 
information based on omnidirectional images reflected in a 
mirror [12]–[13].  

Existing omnidirectional-vision simultaneous localization 
and mapping (SLAM) approaches create maps by estimating 
object locations based on images reflected on paraboloidal 
mirrors or by using omnidirectional information based on 
images from fisheye cameras installed toward the ceiling [14]–
[18]. However, such methods are subject to light and are 
limited in that there are parts hidden from the cameras. In this 
paper, a fisheye camera is attached, to minimize the negative 
effect of light, at the top of a glass tube installed downward. 
This camera system is used to obtain information around all 
robots simultaneously. Existing omnidirectional-vision SLAM 
approaches correct for local positions by estimating the object 
locations based on corrected fisheye images. This paper 
extends these approaches using an object detection method 
based on uncorrected fisheye images. 

This paper proposes a fusion algorithm for the global 
mapping of multiple robots to keep formation. In formation 
control, it is important to identify surrounding robots and to 
maintain the formation flexibly in accordance with the 
surrounding environment. An omnidirectional image obtained 
by using a fisheye camera is ideal to instantaneously estimate 
the location of other robots. Existing methods, in general, make 
use of forward cameras with a field of view of 60 degrees, 
which means that any robot using such a camera may need to 
move at least six times before it is able to fully recognize the 
surrounding environment [19]. In contrast, the proposed 
method using omnidirectional images can complete the same 
mission in an instant. The proposed algorithm uses local 
mappings based on a novel omnidirectional-vision SLAM 
approach for each robot and employs global mappings using 
formations based on motions around multiple robots. This 
novel omnidirectional-vision SLAM approach removes a 
bottom based on a histogram obtained through a fisheye 
camera facing downward and labels the objects (robots and 
obstacles). Motion vectors are obtained using the Lucas–
Kanade optical flow (LKOF) method based on the corner 
points of an extracted object, and then the coordinate of the 
motion vector is corrected using a forward mapping [20]. Local 
maps are created using feature point (the outer point of a 
motion vector) connections of the same label based on the 
characteristics of the corrected motion vectors. Robot locations 

are detected by identifying those with the same movement 
speed on the local map of each robot, and global maps are 
created while robots maintain their formation. The proposed 
algorithm is applied to real robots, and the performance of the 
proposed mapping algorithm is verified by comparing real data 
on the robot positions with the position data generated by 
global maps from the proposed algorithm. 

II. System Description 

1. Overall System 

The proposed algorithm processes data from fisheye 
cameras facing downward and uses the data to create local and 
global maps of multiple robots, while each robot with a local 
map maintains its formation. The proposed algorithm has two 
parts: local mappings for individual robots and global 
mappings and formation control for robots with local maps. 
The local mappings from individual robots produce a 
histogram of the ground information, which is found by 
analyzing the environmental and ground information obtained 
through fisheye lenses mounted onto the individual robots. It 
then clusters information using a labeling algorithm and 
corrects the coordinates of motion vectors (obtained through 
feature points in the corners of fisheye images) using forward 
mappings. It creates global maps (based on the shapes of the 
objects that disturb the path of the robot) through the motion 
vector information collected and cluster information. 
Formation-control and global mappings distinguish between 
obstacles and robots based on the motion vectors contained in 
the local maps and process the given tasks while maintaining 
the formation of the robots. The location of robots is estimated 
based on a global map generated by merging local maps. 

2. Modeling 

The robot system used in this paper is modeled in Fig. 1 and  
 

 

Fig. 1. Robot modeling. 
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Fig. 2. (a) Robot system and (b) a fisheye image. 
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the state vectors of (1), where x, y, and θ in Fig. 1 indicate the 
coordinates and angles of the robot, L is the distance between 
its wheels, vr and vl indicate the speeds of the wheels, and v is 
the speed of the robot. A real robot is made using this modeling 
information, as shown in Fig. 2(a). The robot has two wheels 
(diameter of 15 cm, and height of 30 cm) and has a cylindrical 
shape. A glass tube is installed on top (center) of the robot, and 
a fisheye camera is installed on top of the glass tube. This 
allows for environmental images of the robot to be obtained. 
Figure 2(b) shows a fisheye image (1,280 × 960 (width × 
height), with a viewing angle of 185°). All environmental data 
from the robot can be saved simultaneously because of the 
viewing angle. 

 

 

 

     

     

 

1

( ) 1

1

cos

sin .

k k k k

k k k k k

k
k

x x v t

x y y v t

vr vl
t

L





 







 
   
   
     
   

      








        (1) 

III. Mapping Algorithm for Individual Robot 

1. Sequence of Local Mapping 

The local mapping algorithm, used by each robot and shown 
in Fig. 3, produces a histogram showing environmental and 
ground information, which is obtained from images collected 
through fisheye cameras attached to the robots. It first removes 
unnecessary ground information using a histogram obtained 
from an analysis of the fisheye images, and then it labels 
candidate objects for clustering. It obtains motion vectors using 
the LKOF method based on corners as feature points in fisheye 
images and removes unnecessary vectors by using the 
magnitude and angle distribution of the motion vectors. The 
start and end points of available motion vectors are corrected 
using a correction algorithm based on a hemispherical 
projection model. The local mapping requires two sets of data: 
a dataset of the outer points of objects connected using a  

 

Fig. 3. Overall flow of local mapping algorithm. 
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convex hull and one of clusters based on the labeling of objects. 

2. Clustering Using the Labeling and Connection Algorithm 

Previous studies have used k-means, k-neighbors, artificial 
neural networks, and Bayesian classifiers, among others, to 
extract feature points for clustering purposes. However, if the 
initial number of objects or groups is different from the current 
number, then an error prevents grouping. In this paper, ground 
information is removed using a histogram obtained from 
fisheye images. The remaining information is then labeled for 
clustering. The labeling results are obtained from the image 
that remains after the ground information has been removed, as 
shown in Fig. 4. As shown in Fig. 5, the labeling process is 
refined using a connection algorithm to merge unclear labeling 
regions. Algorithm 1 determines the size of the enlarged object 
by enclosing the overlapped or closely located objects. 
Algorithm 1 summarizes the connection algorithm in the form 
of an algorithm, and the proposed algorithm can detect objects 
in a static environment as well as a dynamic environment.    
It also improves the processing speed through a simple 
subtraction operation and verifies the detection reliability. The 
results of the connection algorithm are shown in Fig. 5. 
 

 

Fig. 4. Labeling before application of connection algorithm.  
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Fig. 5. Position of obstacle candidates using labeling.  
 

Algorithm 1. Region connection. 
Input : corners list in object regions , 1: 4, 1: 4( )n x x y yrect  

Input : corners of connected regions ,( , ,width,height) )( n x yRect  

1.  //Similar Region Connection Algorithm 
2.  for n < blobs do 
3.   if 1n nrect rect  then 

4.     , : 1, 1: 4min( );n x n n x xRect rect   

5.     , : 1, 1: 4min( );n y n n y yRect rect   

6.     ,width : 1, 1: 4 : 1, 1: 4max( ) min( )n n n x x n n x xRect rect rect    

7.     ,width : 1, 1: 4 : 1, 1: 4max( ) min( )n n n y y n n y yRect rect rect    

8.   else if 1n nrect rect   then 

9.     , , 1: 4min( );n x n x xRect rect  

10.    , , 1: 4min( );n y n y yRect rect  

11.        ,width , 1: 4 , 1: 4max( ) min( )n n x x n x xRect rect rect   

12.       ,width , 1: 4 , 1: 4max( ) min( )n n y y n y yRect rect rect   

13.  else 
14.    add n step 
15.  end if 
16. end for 
17. for changedRegionCounts > 0 do 
18.   begin Override label Process  
19. end for 
20. for OverridedlabelCounts > 0 do 
21.   begin Sort regions Process  

22. end for 

 
3. Extraction of Feature Points Using LKOF Method 

A mono-vision or ceiling-vision SLAM approach, using 
images obtained from a single camera, estimates the current 
location of a robot based on the coordinates of the feature 
points obtained by comparing the previous frame with the 
current one [21]–[26]. This requires a comparison of the 
feature corners and boundaries without other information, but it 
is difficult to determine the correlations. In this paper, the 

relationship of the feature points is determined using the optical 
flow between the previous and current frames, and object 
information is estimated using the motion vectors. The basic 
optical flow method is a motion-estimation technique based on 
the differences between two consecutive frames. It assumes 
that the brightness of a pixel does not change even when the 
image frame changes and that spatially adjacent points have the 
same movement. Therefore, the optical flow method represents 
motion vectors for the direction and speed of the movement 
between two consecutive frames and must obtain motion 
vectors in a region with a distinct characteristic by extracting its 
edges or boundaries. In this regard, feature points are extracted 
in this paper using the Harris corner detection method for 
fisheye images [14]. That is, we have 
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where C(x, y) indicates a change in the brightness of pixels 
calculated based on the Gaussian window W and brightness of 
each direction Ix or y, and O(x, y) is the intensity of the corners 
obtained using a change in brightness. If the intensity of a 
corner exceeds the value of the constant m (0.3), then a binary 
image, HCM(x, y), can be obtained. In particular, the Harris 
corner detection algorithm uses 0.04 as the value for the 
constant k. If the algorithm applies the optical flow method 
using the corners as feature points, then the direction and 
magnitude of the motion vectors at the starting points, which 
are the feature points in the previous frame, can be determined. 
The optical flow between two frames can be expressed by the 
following equation based on the assumptions described earlier 
[15]:  
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where dx, dy, and dt indicate changes between two frames. 
Hence, using these changes for all pixels, we can obtain a 
matrix whose elements are the velocity components of the   
x- and y-axis. The least squares method is applied to this matrix 
to extract Vx and Vy against each axis as follows: 
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Fig. 6. Motion vectors using LKOF method.  
 
where A and b are matrices that consist of the partial derivatives 
of the image I with respect to position (x, y) and time t, 
respectively. In addition matrix v consists of Vx and Vy. 
Equation (4) shows the motion vectors of the general optical 
flow, and the LK method uses both the addition of the 
Gaussian filter and the number adjustments of feature points to 
improve the computational load. The velocity components (Vx 
and Vy) of the LKOF method applied to the Gaussian function 
W,	ωi in (5), is as follows: 
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The results of the application of the LKOF method to fisheye 
images are shown in Fig. 6. The points in Fig. 6 are the starting 
points (that is, the feature points before the robot begins to 
move), and the magnitude and direction of the motion vectors 
is shown by the red arrows. The surrounding robots have small 
motion vectors relative to each other because they move in a 
similar manner. However, the obstacles have large motion 
vectors relative to the moving robots because they are static. 

4. Correction of Locations Based on Semispherical Modeling 

Fisheye images have some distortion due to the distortion of 
the fisheye lens. Previous studies have used corrected images 
for all pixels in an image. This calibration method uses no 
information on the outer regions with many distortions because 
it only corrects small areas of a given distortion from the center 
of the fisheye image. In addition, it is slow because it operates 
for all pixels of an image. In this paper, only those coordinates 
of the feature points extracted using the LKOF method are 
corrected to improve the operating speed regardless of the size 
of the image.  

 

Fig. 7. Semispherical modeling. 
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Fig. 8. Corrected motion vectors of objects.  
 

The correction method divides the forward and backward 
mappings depending on how the original image is read. The 
forward mapping method determines the coordinates of the 
target image based on the original image. The backward 
mapping method calculates the coordinates of the original 
image from the target image. Forward mappings create holes 
that do not match because the output coordinates are 
calculated based on the original coordinates; thus they result 
in blurred parts because of the interpolation method used to 
remove the holes. Backward mappings do not create holes 
because they use the original coordinates, which are 
calculated based on the output coordinates, and many general 
corrections. The proposed algorithm uses forward mappings 
to correct coordinates for two reasons. First, it does not 
encounter any problems related with holes because it only 
needs to map the coordinates of objects (robots, obstacles, 
and so on). Second, it reduces the processing time, which is 
related to the access time and size of the input images. 
Forward mappings can be represented by (6) based on a 
hemispherical projection modeling, as shown in Fig. 7. Here, 
F is the focal length, (xd, yd) is the coordinate before the 
distortion is corrected, and (xu, yu) is the coordinate after the 
distortion correction.  
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Fig. 9. Connection of outer points using a convex hull algorithm.  
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Equation (6) obtains the corrected coordinate using the 
uncorrected coordinates, and (7) obtains L, the ratio of 
corrected coordinates to uncorrected coordinates. In (7), rd is 
the distance from the original coordinates to (xd, yd). The 
corrected motion vectors of objects, based on (6), can be seen 
in Fig. 8. 

5. Local Mapping Using Corrected Points of an Object 

The proposed algorithm distinguishes misrecognized vectors 
using the characteristics (magnitude and direction) of objects 
that have the same label. It then sorts all vectors according to a 
measured angle and filters out any misrecognized vectors in the 
process. Finally, using the outer-most points of an object’s 
respective feature points, it then employs a further algorithm 
(convex hull) to extract the outlines of all existing objects [27]–
[29]. 

In this paper, property information (the labelling of feature 
points) is carried out using the data that remains after the 
removal of the ground information. The resulting labelling data 
is then used by the convex hull algorithm to determine the 
outer points of objects. Once the convex hull algorithm is 
completed, we are then able to obtain a map that shows the 
locations of all the objects, as illustrated in Fig. 9. 

IV. Global Mapping for Multiple Robots 

1. Sequence of Global Mapping 

The global mapping of multiple robots, shown in Fig. 10,  

 

Fig. 10. Overall flow of global mapping. 
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Fig. 11. Robot and object information. 
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extracts environmental information on objects using local maps 
created for individual robots and classifies objects. It estimates 
the motion of the robots found using the classified objects, and 
the robots move according to a predetermined formation 
algorithm. It maintains the formation of the robots by updating 
the local maps based on the object information from other 
robots and creates paths and global maps. 

2. Object Classification and Estimation Using Vector 
Information 

The proposed algorithm extracts the central point O(x, y)  
using (8) for the object region obtained from the local map and 
estimates the relationship between the center of the object and 
that of the robot. In (8), I(x, y) is the brightness of the (x, y) 
coordinate, and n is axially the number of bright pixels. It 
distinguishes between obstacles and robots based on the vector 
and relationship information. Because obstacles are static in 
comparison to robots (whose velocity is constant), the motion 
vectors of the obstacles have a characteristically large 
magnitude and are in the opposite direction relative to the 
motion of the robots. As shown in Fig. 11, it determines the  
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Fig. 12. Multi-robot formation for a global mapping. 
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Fig. 13. Global map. 
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3. Formation Control between Multiple Robots 

The movement of multiple robots generates motion vectors 
related to the robot positions. Robots that move at a constant 
speed can obtain less vector information than static obstacles.  
The proposed algorithm checks the movement of the robots 
based on the vector information and retains all formations 
while maintaining the angles and distances between the robots.  
Because the robots employ an omnidirectional-vision SLAM 

approach, it is possible to quickly maintain their formation. In 
addition, formation control is possible through additional 
connections between the robots because the proposed 
algorithm can link the robots within the navigation area. As 
shown in Fig. 12, the proposed system consists of three robots 
(R1, R2, and R3). If obstacles are present in the path of R1, then 
R1 changes direction. R2 and R3 detect the change in R1’s 
direction and correspondingly change their directions so as to 
maintain their group formation. In Fig. 12, d is the distance to 
an object’s center point (from a robot’s center point), and θ is 
the angle between the object’s center point and the heading 
angle of the robot. The dotted circles, therefore, indicate 
regions that a robot is able to explore. 

4. Global Mapping of Multiple Robots 

Global mappings identify the positions of robots and  
obstacles to create global maps using local maps from other 
robots. As shown in Fig. 13, a global map is generated using 
overlay techniques for the same region. If it receives maps 
from many robots, it can then generate more precise maps. 

V. Results 

1. Experiment in Static Environment 

A. Experiment Environment 

An experiment was conducted to verify the performance of 
the proposed algorithm in a static environment. As shown in 
Fig. 14, the obstacle on the ground surface of the experiment 
environment, which is composed of 5 cm grids, is smaller than 
any of the depicted robots. Obstacles are installed to verify the 
generation of local maps based on an omnidirectional-vision 
SLAM approach, and local maps generated by individual 
robots are verified. When robots move in a straight line for a 

 

 

Fig. 14. Experiment environment in a static state. 
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Fig. 15. Experiment result of R1.  
 

 

Fig. 16. Experiment result of R2.  
 

 

Fig.17. Experiment result of R3.  
 
distance of 5 cm, the proposed algorithm conducts a generation 
experiment for both local and global maps. 

B. Experiment Results 

The experimental results were obtained in a static  

 

Fig. 18. Global map in a static environment.  
 
environment, and local maps obtained from R1 for formation 
control are shown in Fig. 15. Local maps obtained from R2 are 
shown in Fig 16, and those from R3 are shown in Fig. 17. The 
top-left images in Figs. 15, 16, and 17 are the labeling results, 
and the top-right images are motion vectors obtained from 
fisheye images. The bottom-left images are corrected motion 
vectors, and the bottom-right images are local maps for each 
robot. The results for global maps generated using local maps 
obtained from individual robots are shown in Fig. 18. The real 
distance between objects is compared with the distance based 
on the global maps obtained from the experimental results to 
verify the accuracy of the proposed algorithm. According to the 
results, the proposed algorithm has small errors (x-error of  
2.23 cm and y-error of 1.49 cm). 

2. Experiment in Dynamic Environment 

A. Experiment Environment 

An experiment for the generation of global maps in a 
dynamic environment is shown in Fig. 19(a). A color patch was 
attached on the top of each robot to detect its position. Global 
maps of the robots and obstacles were obtained using a ceiling 
camera. Maps based on the proposed algorithm are compared 
with those obtained from the ceiling camera. Here, it is a 
requirement that the color patches be easily recognizable and 
that the floor contain no colors that are similar in likeness to 
those used for the patches. A space painted in a non-glossy 
paint is used. As shown in Fig. 19(b), the position-estimation 
program, using global images, utilizes the various types of 
color patches as detected by the ceiling camera. A blue patch is 
the team color and represents the location of all robots. An 
individual color patch represents the location of individual 
robots. The angle between an individual robot’s center line, 
which is the line between the center of its blue patch and that of 
its unique color patch, and the horizontal axis of the image  
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Fig. 19. (a) Experimental environment in a dynamic state and
(b) position-tracking program using a global vision
system. 

(a) (b) 

 
 

 

Fig. 20. Snapshots in a dynamic environment.  
 
indicates the robot’s heading. The position-estimation program 
implements a function that stores the position of the robot in a  
text file. The accuracy of experimental system experimented in 
previous research, and it obtained the small errors (4.16 cm and 
4.46°) [30]. 

B. Experiment Results 

As shown in Fig. 20, an experiment was conducted based 
on the movement of a real robot in a dynamic environment. 
Path data on the robots were obtained using a position-
estimation program through the ceiling camera, and the 
performance of the proposed algorithm was verified by 
comparing the path data from the position-estimation 
program with that from the global maps based on the 
proposed algorithm. The results of the path comparisons are 
shown in Fig. 21, and those of the errors relative to the path 
of multiple robots are shown in Fig. 22. The proposed 
algorithm has relatively small errors (x = 5.65 cm and y = 
4.50 cm) compared with those listed in Table 1. 

 

Fig. 21. Comparisons between the paths in the location-tracking
system and the paths in the proposed system. 
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Fig. 22. Error between the paths in the location-tracking system
and the paths in the proposed system. 
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Table 1. Comparison of experiment results for global paths with five 
other omnidirectional-vision SLAMs. 

 Distance error (cm)

Method using the proposed algorithm 7.32 

Method using Ladybug camera in 2012 [31] 8.51 

Method using spherical image in 2011 [32] 7.11 

Method using upward camera and CHL map in 
2007 [33] 

19.6 

Method using topological navigation in 2007 [34] 11 

Method using scan matching in 2006 [35] 10 

 

 
VI. Conclusion 

This paper proposed a global mapping of multiple robots 
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based on an omnidirectional-vision SLAM approach through 
images obtained from fisheye cameras attached in a downward 
position to the robots. The proposed algorithm extracts feature 
points, using the LKOF method, from fisheye images and 
corrects the coordinates using a correction algorithm based on a 
hemispherical projection model. It then creates local maps by 
connecting the corrected outer coordinates of objects using a 
convex hull algorithm. Multiple robots create global maps 
based on the location and vector information of objects 
obtained from local maps while maintaining formation control. 
According to the experimental results, highly accurate maps 
are obtained from robots based on the proposed algorithm in 
both static and dynamic environments. In general, multiple 
robots must recognize all environmental data by moving 
extensively; however, in our proposed system, the global 
mapping process is significantly enhanced by simultaneously 
making use of all robots’ local data in just a single movement.  

In our future research, we plan to optimize the global 
mapping algorithm, in particular the way that it corrects the 
motion vectors. In addition, we are preparing research to 
improve the performance of the multi-robot system by using a 
fusion of laser scanner sensors and omnidirectional images. 
Finally, we will proceed with research on more accurate 
mappings through the use of a different coordinate correction 
algorithm. 
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