• Title/Summary/Keyword: Low-power processor

Search Result 325, Processing Time 0.024 seconds

A Fully Programmable Shader Processor for Low Power Mobile Devices (저전력 모바일 장치를 위한 완전 프로그램 가능형 쉐이더 프로세서)

  • Jeong, Hyung-Ki;Lee, Joo-Sock;Park, Tae-Ryong;Lee, Kwang-Yeob
    • Journal of IKEEE
    • /
    • v.13 no.2
    • /
    • pp.253-259
    • /
    • 2009
  • In this paper, we propose a novel architecture of a general graphics shader processor without a dedicated hardware. Recently, mobile devices require the high performance graphics processor as well as the small size, low power. The proposed shader processor is a GP-GPU(General-Purpose computing on Graphics Processing Units) to execute the whole OpenGL ES 2.0 graphics pipeline by using shader instructions. It does not require the separate dedicate H/W such as rasterization on this fully programmable capability. The fully programmable 3D graphics shader processor can reduce much of the graphics hardware. The chip size of the designed shader processor is reduced 60% less than the sizes of previous processors.

  • PDF

Efficient Signal Reordering Unit Implementation for FFT (FFT를 위한 효율적인 Signal Reordering Unit 구현)

  • Yang, Seung-Won;Lee, Jang-Yeol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1241-1245
    • /
    • 2009
  • As FFT(Fast Fourier Transform) processor is used in OFDM(Orthogonal Frequency Division Multiplesing) system. According to increase requirement about mobility and broadband, Research about low power and low area FFT processor is needed. So research concern in reduction of memory size and complex multiplier is in progress. Increasing points of FFT increase memory area of FFT processor. Specially, SRU(Signal Reordering Unit) has the most memory in FFT processor. In this paper, we propose a reduced method of memory size of SRU in FFT processor. SRU of 64, 1024 point FFT processor performed implementation by VerilogHDL coding and it verified by simulation. We select the APEX20KE family EP20k1000EPC672-3 device of Altera Corps. SRU implementation is performed by synthesis of Quartus Tool. The bits of data size decide by 24bits that is 12bits from real, imaginary number respectively. It is shown that, the proposed SRU of 64point and 1024point achieve more than 28%, 24% area reduction respectively.

A Low Power UHF RFID Baseband Processor for Mobile Readers (모바일용 저전력 UHF RFID 기저대역 프로세서)

  • Bae, Sung Woo;Park, Jun-Seok;Seong, Yeong Rak;Oh, Ha-Ryoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.85-91
    • /
    • 2014
  • As RFID is utilized more frequently and diversely in terms of its application areas, the application of mobile RFID technology, which integrates cellular networks and RFID, is highly anticipated. The growth and development of the RFID field has bolstered the development of mobile RFID chips to be embedded in mobile phones. Because mobile RFID chips are embedded in cell phones, limitations such as low power, small form factor, and costliness must be confronted. This study presents the design of a RFID digital baseband processor that is suitable for mobile readers. The RF analog component, which affects the baseband signals, is designed separately, in consideration of the limitations stated above. The function of the baseband processor was verified through simulations and prototyped using FPGA. The power consumption of the chip is 20mW under a 20MHz clock and the chip measures $3mm{\times}3mm$.

The Implementation of MPEG-4 Simple Profile Decoder using the Embedded ARM Processor (Embedded ARM Processor를 이용한 MPEG-4 Simple Profile Decoder의 구현)

  • Park, Sung-Wook
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.52 no.2
    • /
    • pp.85-90
    • /
    • 2003
  • This paper has presented the efficient implementation of MPEG-4 simple profile video decoder, which is used as video compression standard in mobile video communication. We have used the ARM9 processor in implementing this MPEG-4 simple profile, which requires much processing power and low power implementation. At first we implemented with C-language under the PC environment with ADS(ARM Developer Suite) environment, and then we have tried to reduce a clock cycle for a power consumption optimization through conversion an assembly language for C-code partly. We have verified the processor is operated at 22.47MHz operation after optimization, but 148MHz before optimization.

Analysis of Power Saving Factor for a DVS Based Multimedia Processor (DVS 기반 멀티미디어 프로세서의 전력절감율 분석)

  • Kim Byoung-Il;Chang Tae-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.1
    • /
    • pp.95-100
    • /
    • 2005
  • This paper proposes a DVS method which effectively reduces the power consumption of multimedia signal processor. Analytic derivations of effective range of its power saving factor are obtained with the assumption of a Gaussian distribution for the frame-based computational burden of the multimedia processor. A closed form equation of the power saving factor is derived in terms of the mean-standard deviation of the distribution. An MPEG-2 video decoder algorithm and AAC encoder algorithm are tested on ARM9 RISC processor for the experimental verification of the power saying of the proposed DVS approach. The experimental results with diverse MPEG-2 video and audio files show 50~30% power saving factor and show good agreement with those of the analytically derived values.

Cache and Pipeline Architecture Improvement and Low Power Design of Embedded Processor (임베디드 프로세서의 캐시와 파이프라인 구조개선 및 저전력 설계)

  • Jung, Hong-Kyun;Ryoo, Kwang-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.289-292
    • /
    • 2008
  • This paper presents a branch prediction algorithm and a 4-way set-associative cache for performance improvement of OpenRISC processor and a clock gating algorithm using ODC (Observability Don't Care) operation for a low-power processor. The branch prediction algorithm has a structure using BTB(Branch Target Buffer) and 4-way set associative cache has lower miss rate than direct-mapped cache. The clock gating algorithm reduces dynamic power consumption. As a result of estimation of performance and dynamic power, the performance of the OpenRISC processor using the proposed algorithm is improved about 8.9% and dynamic power of the processor using samsung $0.18{\mu}m$ technology library is reduced by 13.9%.

  • PDF

Selecting a Synthesizable RISC-V Processor Core for Low-cost Hardware Devices

  • Gookyi, Dennis Agyemanh Nana;Ryoo, Kwangki
    • Journal of Information Processing Systems
    • /
    • v.15 no.6
    • /
    • pp.1406-1421
    • /
    • 2019
  • The Internet-of-Things (IoT) has been deployed in almost every facet of our day to day activities. This is made possible because sensing and data collection devices have been given computing and communication capabilities. The devices implement System-on-Chips (SoCs) that incorporate a lot of functionalities, yet they are severely constrained in terms of memory capacitance, hardware area, and power consumption. With the increase in the functionalities of sensing devices, there is a need for low-cost synthesizable processors to handle control, interfacing, and error processing. The first step in selecting a synthesizable processor core for low-cost devices is to examine the hardware resource utilization to make sure that it fulfills the requirements of the device. This paper gives an analysis of the hardware resource usage of ten synthesizable processors that implement the Reduced Instruction Set Computer Five (RISC-V) Instruction Set Architecture (ISA). All the ten processors are synthesized using Vivado v2018.02. The maximum frequency, area, and power reports are extracted and a comparison is made to determine which processor is ideal for low-cost hardware devices.

Low-Power Discrete-Event SoC for 3DTV Active Shutter Glasses (3DTV 엑티브 셔터 안경을 위한 저전력 이산-사건 SoC)

  • Park, Dae-Jin;Kwak, Sung-Ho;Kim, Chang-Min;Kim, Tag-Gon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.18-26
    • /
    • 2011
  • Debates concerning the competitive edge of leading 3DTV technology of the shutter glasses (SG) 3D and the film-type patterned retarder (FPR) are flaring up. Although SG technology enables Full-HD 3D vision, it requires complex systems including the sync transmitter (emitter), the sync processor chip, and the LCD lens in the active shutter glasses. In addition, the transferred sync-signal is easily affected by the external noise and a 3DTV viewer may feel flicker-effect caused by cross-talk of the left and right image. The operating current of the sync processor in the 3DTV active shutter glasses is gradually increasing to compensate the sync reconstruction error. The proposed chip is a low-power hardware sync processor based discrete-event SoC(system on a chip) designed specifically for the 3DTV active shutter glasses. This processor implements the newly designed power-saving techniques targeted for low-power operation in a noisy environment between 3DTV and the active shutter glasses. This design includes a hardware pre-processor based on a universal edge tracer and provides a perfect sync reconstruction based on a floating-point timer to advance the prior commercial 3DTV shutter glasses in terms of their power consumption. These two techniques enable an accurate sync reconstruction in the slow clock frequency of the synchronization timer and reduce the power consumption to less than about a maximum of 20% compared with other major commercial processors. This article describes the system's architecture and the details of the proposed techniques, also identifying the key concepts and functions.

Analysis and Implementation of Multiphase Multilevel Hybrid Single Carrier Sinusoidal Modulation

  • Govindaraju, C.;Baskaran, K.
    • Journal of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.365-373
    • /
    • 2010
  • This paper proposes a hybrid single carrier sinusoidal modulation suitable for multiphase multilevel inverters. Multiphase multilevel inverters are controlled by hybrid modulation to provide multiphase variable voltage and a variable frequency supply. The proposed modulation combines the benefits of fundamental frequency modulation and single carrier sinusoidal modulation (SC-SPWM) strategies. The main characteristics of hybrid modulation are a reduction in switching losses and improved harmonic performance. The proposed algorithm can be applied to cascaded multilevel inverter topologies. It has low computational complexity and it is suitable for hardware implementations. SC-SPWM and its base modulation design are implemented on a TMS320F2407 digital signal processor (DSP). A Complex Programmable Logic Device realizes the hybrid PWM algorithm and it is integrated with a DSP processor for hybrid SC-SPWM generation. The feasibility of this hybrid modulation is verified by spectral analysis, power loss analysis, simulation and experimental results.

A Design of 16-bit Adiabatic Low-Power Microprocessor (단열회로를 이용한 16-bit 저전력 마이크로프로세서의 설계)

  • Shin, Young-Joon;Lee, Byung-Hoon;Lee, Chan-Ho;Moon, Yong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.6
    • /
    • pp.31-38
    • /
    • 2003
  • A 16-bit adiabatic low-power Microprocessor is designed. The processor consists of control block, multi-port register file, program counter, and ALU. An efficient four-phase clock generator is also designed to provide power clocks for adiabatic processor. Adiabatic circuits based on efficient charge recovery logic(ECRL), are designed 0.35,${\mu}{\textrm}{m}$ CMOS technology. Conventional CMOS processor is also designed to compare the energy consumption of microprocessors. Simulation results show that the power consumption of the adiabatic microprocessor is reduced by a factor of 2.9∼3.1 compared to that of conventional CMOS microprocessor.