• Title/Summary/Keyword: Low-Power Circuit Design

Search Result 778, Processing Time 0.028 seconds

A Two-bit Bus-Invert Coding Scheme With a Mid-level State Bus-Line for Low Power VLSI Design

  • Yoon, Myungchul
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.4
    • /
    • pp.436-442
    • /
    • 2014
  • A new bus-invert coding circuit, called Two-bit Bus-Invert Coding (TBIC) is presented. TBIC partitions a bus into a set of two-bit sub-buses, and applies the bus-invert (BI) algorithm to each sub-bus. Unlike ordinary BI circuits using invert-lines, TBIC does not use an invert-line, so that it sends coding information through a bus-line. To transmit 3-bit information with 2 bus-lines, TBIC allows one bus-line to have a mid-level state, called M-state. TBIC increases the performance of BI algorithm, by suppressing the generation of overhead transitions. TBIC reduces bus transitions by about 45.7%, which is 83% greater than the maximum achievable performance of ordinary BI with invert-lines.

Design of a Low-Power CMOS Fractional-N Frequency Synthesizer for 2.4GHz ISM Band Applications (2.4GHz ISM 대역 응용을 위한 저전력 CMOS Fractional-N 주파수합성기 설계)

  • Oh, Kun-Chang;Kim, Kyung-Hwan;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.6
    • /
    • pp.60-67
    • /
    • 2008
  • A low-power 2.4GHz fractional-N frequency synthesizer has been designed for 2.4GHz ISM band applications such as Bluetooth, Zigbee, and WLAN. To achieve low-power characteristic, the design has been focused on the power optimization of power-hungry blocks such as VCO, prescaler, and ${\Sigma}-{\Delta}$ modulator. An NP-core type VCO is adopted to optimize both phase noise and power consumption. Dynamic D-F/Fs with no static DC current are employed in designing the low-power prescaler circuit. The ${\Sigma}-{\Delta}$ modulator is designed using a modulus mapping circuit for reducing hardware complexity and power consumption. The designed frequency synthesizer which was fabricated using a $0.18{\mu}m$ CMOS process consumes 7.9mA from a single 1.8V supply voltage. The experimental results show that a phase noise of -118dBc/Hz at 1MHz offset, the reference spur of -70dBc at 25MHz offset, and the channel switching time of $15{\mu}s$ over 25MHz transition have been achieved. The designed chip occupies an area of $1.16mm^2$ including pads where the core area is only $0.64mm^2$.

Design of a Analog Multiplier for low-voltage low-power (저전압 저전력 아날로그 멀티플라이어 설계)

  • Lee, Goun-Ho;Seul, Nam-O
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.3058-3060
    • /
    • 2005
  • In this paper, the CMOS four-quadrant analog multipliers for low-voltage low-power applications are presented. The circuit approach is based on the characteristic of the LV (Low-Voltage) composite transistor which is one of the useful analog building blocks. SPICE simulations are carried out to examine the performances of the designed multipliers. Simulation results are obtained by $0.25{\mu}m$ CMOS parameters with 2V power supply. The LV composite transistor can easily be extended to perform a four-quadrant multiplication. The multiplier has a linear input range up to ${\pm}0.5V$ with a linearity error of less than 1%. The measured -3dB bandwidth is 290MHz and the power dissipation is $37{\mu}W$. The proposed multiplier is expected to be suitable for analog signal processing applications such as portable communication equipment, radio receivers, and hand-held movie cameras.

  • PDF

The Design of high Efficiency APLC for the Low Power load (저용량 부하를 위한 고효율 APLC의 설계)

  • 김병진;전희종
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.217-221
    • /
    • 2001
  • In this paper, APLC(Active Power Line Conditioner) is designed for low consumed power electrical equipment such as communication electronic equipment, computer sever and etc.. Because APLC which is hunted to the mains controls only the elements of harmonics, the designed APLC is very high efficient. Additionally, controller designed with low cost micro-controller and analog circuit has good merit economically. Simulation and experimental results on a prototype verify the feasibility of the proposed scheme.

  • PDF

Ultra-Low Power MICS RF Transceiver Design for Wireless Sensor Network (WSN 을 위한 초저전력 MICS RF 송수신기 기술 개요 및 설계 기법)

  • Gyu-won Kim;Yu-jung Kim;Junghwan Han
    • Transactions on Semiconductor Engineering
    • /
    • v.2 no.1
    • /
    • pp.9-16
    • /
    • 2024
  • This paper discusses the design of bio-implanted ultra-low-power MICS RF transceivers for wireless sensor networks. The 400 MHz MICS standard was considered for the implementation of the WBAN wireless sensor system, indirectly minimizing radio propagation losses in the human body and the inference with surrounding networks. This paper includes link budget, various transmission and reception architectures for a system design and ultra-low power transceiver circuit techniques for the implementation of RF transceivers that meet MICS standards.

Design of SCR-Based ESD Protection Circuit for 3.3 V I/O and 20 V Power Clamp

  • Jung, Jin Woo;Koo, Yong Seo
    • ETRI Journal
    • /
    • v.37 no.1
    • /
    • pp.97-106
    • /
    • 2015
  • In this paper, MOS-triggered silicon-controlled rectifier (SCR)-based electrostatic discharge (ESD) protection circuits for mobile application in 3.3 V I/O and SCR-based ESD protection circuits with floating N+/P+ diffusion regions for inverter and light-emitting diode driver applications in 20 V power clamps were designed. The breakdown voltage is induced by a grounded-gate NMOS (ggNMOS) in the MOS-triggered SCR-based ESD protection circuit for 3.3 V I/O. This lowers the breakdown voltage of the SCR by providing a trigger current to the P-well of the SCR. However, the operation resistance is increased compared to SCR, because additional diffusion regions increase the overall resistance of the protection circuit. To overcome this problem, the number of ggNMOS fingers was increased. The ESD protection circuit for the power clamp application at 20 V had a breakdown voltage of 23 V; the product of a high holding voltage by the N+/P+ floating diffusion region. The trigger voltage was improved by the partial insertion of a P-body to narrow the gap between the trigger and holding voltages. The ESD protection circuits for low- and high-voltage applications were designed using $0.18{\mu}m$ Bipolar-CMOS-DMOS technology, with $100{\mu}m$ width. Electrical characteristics and robustness are analyzed by a transmission line pulse measurement and an ESD pulse generator (ESS-6008).

Design of New LED Operation Drive Using Compensating Circuit for Transformed Voltage (전압 변동분 보상회로를 이용한 새로운 LED 구동드라이브 설계)

  • Han, Man-Seung;Lee, Yong-Jae;Park, Sung-Jun;Lee, Sang-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.5
    • /
    • pp.7-14
    • /
    • 2011
  • Currently high power Light Emitting Diode (LED) is in the limelight due to its characteristics of long durability, low maintenance costs, and high efficiency. Furthermore, it does not emit pollutants or poisonous gases and is a light source not using mercury, so it holds a high status in eco-friendly terms as well. In this paper, we studied a two-stage LED power drive circuit that can compensate only voltage regulation through LED output current, in order to improve efficiency of LED drive with constant current control in accordance with changes in temperature. The proposed LED drive has an advantage of reducing LED drive's voltage losses by controlling only voltage change of input power, compared with an existing circuit which controls input voltage. The suggested non-insulation compensating circuit for voltage change was verified to have improved efficiency relative to a LED drive using existing DC/DC converter.

Development of RSFQ Logic Circuits and Delay Time Considerations in Circuit Design (RSFQ 논리회로의 개발과 회로설계에 대한 지연시간 고려)

  • Kang, J.H.;Kim, J.Y.
    • Progress in Superconductivity
    • /
    • v.9 no.2
    • /
    • pp.157-161
    • /
    • 2008
  • Due to high speed operations and ultra low power consumptions RSFQ logic circuit is a very good candidate for future electronic device. The focus of the RSFQ circuit development has been on the advancement of analog-to-digital converters and microprocessors. Recent works on RSFQ ALU development showed the successful operation of an 1-bit block of ALU at 40 GHz. Recently, the study of an RSFQ analog-to-digital converter has been extended to the development of a single chip RF digital receiver. Compared to the voltage logic circuits, RSFQ circuits operate based on the pulse logic. This naturally leads the circuit structure of RSFQ circuit to be pipelined. Delay time on each pipelined stage determines the ultimate operating speed of the circuit. In simulations, a two junction Josephson transmission line's delay time was about 10 ps, a splitter's 14.5 ps, a switch's 13 ps, a half adder's 67 ps. Optimization of the 4-bit ALU circuit has been made with delay time consideration to operate comfortably at 10 GHz or above.

  • PDF

A Low-Voltage High-Performance CMOS Feedforward AGC Circuit for Wideband Wireless Receivers

  • Alegre, Juan Pablo;Calvo, Belen;Celma, Santiago
    • ETRI Journal
    • /
    • v.30 no.5
    • /
    • pp.729-734
    • /
    • 2008
  • Wireless communication systems, such as WLAN or Bluetooth receivers, employ preamble data to estimate the channel characteristics, introducing stringent settling-time constraints. This makes the use of traditional closed-loop feedback automatic gain control (AGC) circuits impractical for these applications. In this paper, a compact feedforward AGC circuit is proposed to obtain a fast-settling response. The AGC has been implemented in a 0.35 ${\mu}m$ standard CMOS technology. Supplied at 1.8 V, it operates with a power consumption of 1.6 mW at frequencies as high as 100 MHz, while its gain ranges from 0 dB to 21 dB in 3 dB steps through a digital word. The settling time of the circuit is below 0.25 ${\mu}s$.

  • PDF

Design of a Low-Power CVSL Full Adder Using Low-Swing Technique (Low-Swing 기술을 이용한 저 전력 CVSL 전가산기 설계)

  • Kang Jang Hee;Kim Jeong Beom
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.2 s.332
    • /
    • pp.41-48
    • /
    • 2005
  • In this paper, we propose a new Low-Swing CVSL full adder for low power consumption. An $8\times8$ parallel multiplier is used for the comparison between the proposed Low-Swing CVSL full adder with conventional CVSL full adder. Comparing the previous works, this circuit is reduced the power consumption rate of $13.1\%$ and the power-delay-product of $14.3\%$. The validity and effectiveness of the proposes circuits are verified through the HSPICE under Hynix $0.35{\mu}m$ standard CMOS process.