• 제목/요약/키워드: Low temperature annealing

검색결과 686건 처리시간 0.028초

열처리 온도에 따른 TiO2/Ag/TiO2 박막의 근적외선 반사 특성 변화 (Effect of Annealing Temperature on the Low Emissivity of TiO2/Ag/TiO2 Films)

  • 김소영;문현주;김대일
    • 열처리공학회지
    • /
    • 제28권3호
    • /
    • pp.134-138
    • /
    • 2015
  • Ag intermediated $TiO_2$ films were deposited by RF and DC magnetron sputtering and then vacuum annealed at 100, 200 and $300^{\circ}C$ for 30 minutes to investigate the effect of annealing temperature on the structural and optical properties of the films. For all depositions, the thickness of the $TiO_2$ and Ag films were kept constant at 24 and 15 nm by controlling the deposition time. As-deposited $TiO_2/Ag/TiO_2$ trilayer films have a weak crystalline and an optical reflectance in a near infrared wavelength region of 77.8%, while the films annealed at $300^{\circ}C$ show the polycrystalline structure and an increased mean optical reflectance of 80.4%. From the experimental results, it can be concluded that increasing the annealing temperature enhanced the structural and optical properties of the $TiO_2/Ag/TiO_2$ films.

Negative-bias Temperature Instability 및 Hot-carrier Injection을 통한 중수소 주입된 게이트 산화막의 신뢰성 분석 (Reliability Analysis for Deuterium Incorporated Gate Oxide Film through Negative-bias Temperature Instability and Hot-carrier Injection)

  • 이재성
    • 한국전기전자재료학회논문지
    • /
    • 제21권8호
    • /
    • pp.687-694
    • /
    • 2008
  • This paper is focused on the improvement of MOS device reliability related to deuterium process. The injection of deuterium into the gate oxide film was achieved through two kind of method, high-pressure annealing and low-energy implantation at the back-end of line, for the purpose of the passivation of dangling bonds at $SiO_2/Si$ interface. Experimental results are presented for the degradation of 3-nm-thick gate oxide ($SiO_2$) under both negative-bias temperature instability (NBTI) and hot-carrier injection (HCI) stresses using P and NMOSFETs. Annealing process was rather difficult to control the concentration of deuterium. Because when the concentration of deuterium is redundant in gate oxide excess traps are generated and degrades the performance, we found annealing process did not show the improved characteristics in device reliability, compared to conventional process. However, deuterium ion implantation at the back-end process was effective method for the fabrication of the deuterated gate oxide. Device parameter variations under the electrical stresses depend on the deuterium concentration and are improved by low-energy deuterium implantation, compared to conventional process. Our result suggests the novel method to incorporate deuterium in the MOS structure for the reliability.

Low temperature solid phase crystallization of amorphous silicon thin film by crystalline activation

  • Kim, Hyung-Taek;Kim, Young-Kwan
    • Journal of Korean Vacuum Science & Technology
    • /
    • 제2권2호
    • /
    • pp.97-100
    • /
    • 1998
  • We have investigated the effects of crystalline activation on solid phase crystallization (SPC) of amorphous silicon (a-Si) thin films. Wet blasting and self ion implantation were employed as the activation treatments to induce macro or micro crystalline damages on deposited a-Si films. Low temperature and larger grain crystallization were obtained by the applied two-step activation. High degree of crystallinity was also observed on both furnace and rapid SPC. crystalline activations showed the promotion of nucleation on the activated regions and the retardation of growth in an amorphous matrix in SPC. The observed behavior of two-step SPC was strongly dependent on the applied activation and annealing processes. It was also found that the diversified effects by macro and micro activations on the SPC were virtually diminished as the annealing temperature increased.

  • PDF

탄소나노튜브의 저온성장을 위한 합성가스의 최적화 연구 (Optimization of Growth Gases for the Low-temperature Synthesis of Carbon Nanotubes)

  • 김영래;전홍준;이한성;곽정춘;황호수;공병윤;이내성
    • 한국전기전자재료학회논문지
    • /
    • 제22권4호
    • /
    • pp.342-349
    • /
    • 2009
  • This study investigated the growth characteristics of carbon nanotubes (CNTs) by changing a period of annealing time and a $C_{2}H_{2}/H_2$ flow ratio at temperature as low as $450^{\circ}C$ with inductively coupled plasma chemical vapor deposition. The 1-nm-thick Fe-Ni-Co alloy thin film served as a catalyst layer for the growth of CNTs, which was thermally evaporated on the 15-nm-thick Al underlayer deposited on the 50-nm-thick Ti diffusion barrier. The annealing at low temperature of $450^{\circ}C$ brought about almost no granulation of the catalyst layer, and the CNT growth was not affected by a period of annealing time. A study of changing the flow rate of $C_{2}H_{2}$ and $H_2$ showed that as the ratio of the $C_{2}H_{2}$ flow rate to the $H_2$ flow rate was lowered, the CNTs were grown to be longer With further decreasing the flow ratio, the length of CNTs reached the maximum and then became shorter. Under the optimized gas flow rates, we successfully synthesized CNTs with a uniform length over a 4-inch Si wafer at $450^{\circ}C$.

Co/Cu인공초격자에서 저온 열처리가 자기저항에 미치는 영향 (Effect of Low Temperature Annealing on the Magnetoresistance in Co/Cu Artificial Superlattice)

  • 민경익;송용진;이후산;주승기
    • 한국자기학회지
    • /
    • 제3권4호
    • /
    • pp.305-309
    • /
    • 1993
  • 본 연구에서는 고주파 마그네트론 스퍼터링에 의해 형성된 Co/Cu 인공초격자를 저온에서 열처리함으로써 열적 안정성을 펑가하고 수반된 계면 반응이 자기저항에 미치는 영향을 조사하였다. Cu 사잇층 두께, Fe 바닥층 두께, 바닥층의 종류에 따른 열처리 거동의 차이를 조사하였으며, X선 회절분석과 저항분석을 통해 계면반응과 자기저항의 상관관계를 검토하였다. Co/Cu 인공초격자를 저 온($450^{\circ}C$ 이하) 에서 급속열처리하는 경우 열처리 온도가 증가함에 따라 Cu 사잇층 두께가 얇 을 때 ($7\AA$)에는 기존의 보고와 마찬가지로 자기저항이 일방적으로 감소하였으나 Cu 사잇층 두께가 두꺼울 때($20~25\AA$)에는 이와는 달리 자기저항이 증가하는 것으로 나타났다. 소각 X선 회절 분석 결과에 의하면, 이는 계면 명확성이 증대되기 때문인 것으로 밝혀졌다. Fe 바닥층 두 께가 두꺼울수록 열적 안정성이 우수하였다. (200)우선방위가 발달한 Cu 바닥층의 경우 Fe 바닥층보다 낮은 온도에서 계면반응(Co와 Cu의 분리) 이 일어났는데, 이는 결정방향에 따른 확산속도의 차이로 설명될 수 있었다.

  • PDF

여러 분위기에서의 저온 열처리와 폴리머 기판의 표면 morphology가 비정질 $Ta_2O_5$ 박막 커패시터의 특성에 미치는 영향 (Effects of Low Temperature Annealing at Various Atmospheres and Substrate Surface Morphology on the Characteristics of the Amorphous $Ta_2O_5$ Thin Film Capacitors)

  • 조성동;백경욱
    • 한국재료학회지
    • /
    • 제9권5호
    • /
    • pp.509-514
    • /
    • 1999
  • Interest in the integrated capacitors, which make it possible to reduce the size of and to obtain improved electrical performance of an electronic system, is expanding. In this study, $Ta_2$O\ulcorner thin film capacitors for MCM integrated capacitors were fabricated on a Upilex-S polymer film by DC magnetron reactive sputtering and the effects of low temperature annealing at various atmospheres and substrate surface morphology on the capacitor characteristics were discussed. The low temperature($150^{\circ}C$) annealing produced improved capacitor yield irrespective of the annealing at mosphere. But the leakage current of the $O_2$-annealed film was larger than that of any other films. This is presumably mosphere. But the leakage current of the $O_2$-annealed film was larger than that of any other films. This is presumably due to the change of the $Ta_2$O\ulcorner film surface by oxygen, which was explained by conduction mechanism study. Leakage current and breakdown field strength of the capacitors fabricated on the Upilex-S film were 7.27$\times$10\ulcornerA/$\textrm{cm}^2$ and 1.0 MV/cm respectively. These capacitor characteristics were inferior to those of the capacitors fabricated on the Si substrate but enough to be used for decoupling capacitors in multilayer package. Roughness Analysis of each layer by AFM demonstrated that the properties of the capacitors fabricated on the polymer film were affected by the surface morphology of the substrate. This substrate effect could be classified into two factors. One is the surface morphology of the polymer film and the other is the surface morphology of the metal bottom electrode determined by the deposition process. Therefore, the control of the two factors is important to obtain improved electrical of capacitors deposited on a polymer film.

  • PDF

Catalytic CVD 저온공정으로 제조된 나노급 니켈실리사이드의 물성 (Property of Nano-thickness Nickel Silicides with Low Temperature Catalytic CVD)

  • 최용윤;김건일;박종성;송오성
    • 대한금속재료학회지
    • /
    • 제48권2호
    • /
    • pp.133-140
    • /
    • 2010
  • 10 nm thick Ni layers were deposited on 200 nm $SiO_2/Si$ substrates using an e-beam evaporator. Then, 60 nm or 20 nm thick ${\alpha}$-Si:H layers were grown at low temperature (<$200^{\circ}C$) by a Catalytic-CVD. NiSi layers were already formed instantaneously during Cat-CVD process regardless of the thickness of the $\alpha$-Si. The resulting changes in sheet resistance, microstructure, phase, chemical composition, and surface roughness with the additional rapid thermal annealing up to $500^{\circ}C$ were examined using a four point probe, HRXRD, FE-SEM, TEM, AES, and SPM, respectively. The sheet resistance of the NiSi layer was 12${\Omega}$/□ regardless of the thickness of the ${\alpha}$-Si and kept stable even after the additional annealing process. The thickness of the NiSi layer was 30 nm with excellent uniformity and the surface roughness was maintained under 2 nm after the annealing. Accordingly, our result implies that the low temperature Cat-CVD process with proposed films stack sequence may have more advantages than the conventional CVD process for nano scale NiSi applications.

Fe-10Mn-3.5Si 합금의 초소성에 미치는 반복 냉연 및 소둔의 영향 (Effect of Repetitive Cold Rolling and Annealing on the Superplasticity of Fe-10Mn-3.5Si Alloy)

  • 정현빈;최석원;이영국
    • 열처리공학회지
    • /
    • 제35권4호
    • /
    • pp.211-219
    • /
    • 2022
  • It is known that superplastic materials with ultrafine grains have high elongation mainly due to grain boundary sliding. Therefore, in the present study we examined the influence of grain refinement, caused by a repetitive cold rolling and annealing process, on both superplastic elongation and superplastic deformation mechanism. The cold rolling and annealing process was repetitively applied up to 4 times using Fe-10Mn-3.5Si alloy. High-temperature tensile tests were conducted at 763 K with an initial strain rate of 1 × 10-3 s-1 using the specimens. The superplastic elongation increased with the number of the repetitive cold rolling and annealing process; in particular, the 4 cycled specimen exhibited the highest elongation of 372%. The primary deformation mechanism of all specimens was grain boundary sliding between recrystallized α-ferrite and reverted γ-austenite grains. The main reason for the increase in elongation with the number of the repetitive cold rolling and annealing process was the increase in fractions of fine recrystallized α-ferrite and reverted γ-austenite grains, which undergo grain boundary sliding.

Post-annealing 방법으로 제작된 저온소결 Pb(Zn1/2W1/2)O3-Pb(Mn1/2Nb2/3)O3-Pb(Zr0.48Ti0.52)O3 세라믹의 압전 및 유전특성 (Piezoelectric and Dielectric Properties of Low Temperature Sintering Pb(Zn1/2W1/2)O3-Pb(Mn1/2Nb2/3)O3-Pb(Zr0.48Ti0.52)O3 Ceramics Manufactured by Post-annealing Method)

  • 류주현;이갑수
    • 한국전기전자재료학회논문지
    • /
    • 제21권3호
    • /
    • pp.227-231
    • /
    • 2008
  • In this study, in order to improve the electrical properties of low temperature sintering piezoelectric ceramics, $[0.05Pb(Zn_{1/2}W_{1/2})-0.07Pb(Mn_{1/3}Nb_{2/3})-0.088Pb(Zr_{0.48}Ti_{0.52})]O_3$(abbreviated as PZW-PMN-PZT) ceramic systems were fabricated using $Bi_2O_3$, CuO and $Li_2CO_3$ as sintering aids and then their piezoelectric and dielectric properties were investigated according to the amount of $Li_2CO_3$ and post-annealing process. Post-annealing process enhanced all physical properties except for mechanical quality factor (Qm). 0.2 wt% $Li_2CO_3$ added and post-annealed specimen showed the excellent values suitable for low loss piezoelectric actuator application as follow: the density = 7.86 $g/cm^3$ electromechanical coupling factor (kp) = 0.575, piezoelectric constant $d_{33}$ = 370 pC/N, dielectric constant ($\varepsilon_r$) = 1546, and mechanical quality factor (Qm) = 1161, respectively.