DOI QR코드

DOI QR Code

Fe-10Mn-3.5Si 합금의 초소성에 미치는 반복 냉연 및 소둔의 영향

Effect of Repetitive Cold Rolling and Annealing on the Superplasticity of Fe-10Mn-3.5Si Alloy

  • 정현빈 (연세대학교 신소재공학과) ;
  • 최석원 (연세대학교 신소재공학과) ;
  • 이영국 (연세대학교 신소재공학과)
  • Jeong, Hyun-Bin (Department of Materials Science and Engineering, Yonsei University) ;
  • Choi, Seok-Won (Department of Materials Science and Engineering, Yonsei University) ;
  • Lee, Young-Kook (Department of Materials Science and Engineering, Yonsei University)
  • 투고 : 2022.07.13
  • 심사 : 2022.07.25
  • 발행 : 2022.07.30

초록

It is known that superplastic materials with ultrafine grains have high elongation mainly due to grain boundary sliding. Therefore, in the present study we examined the influence of grain refinement, caused by a repetitive cold rolling and annealing process, on both superplastic elongation and superplastic deformation mechanism. The cold rolling and annealing process was repetitively applied up to 4 times using Fe-10Mn-3.5Si alloy. High-temperature tensile tests were conducted at 763 K with an initial strain rate of 1 × 10-3 s-1 using the specimens. The superplastic elongation increased with the number of the repetitive cold rolling and annealing process; in particular, the 4 cycled specimen exhibited the highest elongation of 372%. The primary deformation mechanism of all specimens was grain boundary sliding between recrystallized α-ferrite and reverted γ-austenite grains. The main reason for the increase in elongation with the number of the repetitive cold rolling and annealing process was the increase in fractions of fine recrystallized α-ferrite and reverted γ-austenite grains, which undergo grain boundary sliding.

키워드

과제정보

이 논문은 2018년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(No. 2018R1D1A1A09083753).

참고문헌

  1. R. Z. Valiev, V. U. Kazykhanov, A. M. Mavlyutov, A. A. Yudakhina, N. Q. Chinh, and M. Y. Murashkin : Adv. Funct. Mater., 22 (2020) 1900555.
  2. S. V. Zherebtsov, E. A. Kudryavtsev, G. A. Salishchev, B. B. Straumal, and S. L. Semiatin : Acta Mater., 121 (2016) 152-163. https://doi.org/10.1016/j.actamat.2016.09.003
  3. M. Demirtas, G. Purcek, H. Yanar, Z. J. Zhang, and Z. F. Zhang : Mater. Sci. Eng. A, 644 (2015) 17-24. https://doi.org/10.1016/j.msea.2015.07.041
  4. K. Edalati, T. Masuda, M. Arita, M. Furui, X. Sauvage, Z. Horita, and R. Z. Valiev : Sci. Rep., 7 (2017) 2662. https://doi.org/10.1038/s41598-017-02846-2
  5. S. X. McFadden, R. S. Mishra, R. Z. Valiev, A. P. Zhilyaev, and A. K. Mukherjee : Nature, 398 (1999) 684-686. https://doi.org/10.1038/19486
  6. H. Zhang, K. G. Pradeep, S. Mandal, D. Ponge, P. Choi, C. C. Tasan, and D. Raabe : Acta Mater., 63 (2014) 232-244. https://doi.org/10.1016/j.actamat.2013.10.034
  7. B. Walser and O. D. Sherby : Metall. Trans., A 10A (1979) 1461-1471.
  8. Y. S. Han and S. H. Hong: Scr. Mater., 36 (1997) 557-563. https://doi.org/10.1016/S1359-6462(96)00421-6
  9. K. Tsuzaki, H. Matsuyama, M. Nagao, and T. Maki : Mater. Trans., JIM 31 (1990) 983-994. https://doi.org/10.2320/matertrans1989.31.983
  10. W. Wang, M. Yang, D. Yan, P. Jiang, F. Yuan, and X. Wu : Mater. Sci. Eng. A, 702 (2017) 133-141. https://doi.org/10.1016/j.msea.2017.07.011
  11. W. Cao, C. Huang, C. Wang, H. Dong, and Y. Weng : Sci. Rep., 7 (2017) 9199. https://doi.org/10.1038/s41598-017-09493-7
  12. Z. Cao, G. Wu, X. Sun, C. Wang, D. Ponge, and W. Cao : Scr. Mater., 152 (2018) 27-30. https://doi.org/10.1016/j.scriptamat.2018.03.046
  13. J. Han, S. -H. Kang, S. -J. Lee, M. Kawasaki, H. -J. Lee, D. Ponge, D. Raabe, and Y. -K. Lee : Nat. Commun, 8 (2017) 751. https://doi.org/10.1038/s41467-017-00814-y
  14. S. -H. Kang, S. -W. Choi, Y. -D. Im, and Y. -K. Lee : Mater. Sci. Eng. A, 780 (2020) 139174. https://doi.org/10.1016/j.msea.2020.139174
  15. S. -H. Kang, H. -B. Jeong, J. -S. Hong, and Y. -K. Lee : Mater. Sci. Eng. A, 822 (2021) 141697. https://doi.org/10.1016/j.msea.2021.141697
  16. H. -B. Jeong, S. -W. Choi, S. -H. Kang, and Y. -K. Lee : Mater. Sci. Eng. A, 848 (2022) 143408. https://doi.org/10.1016/j.msea.2022.143408
  17. K. A. Padmanabhan, S. B. Prabu, R. R. Mulyukov, A. Nazarov, R. M. Imayev, and S. G. Chowdhury : Superplasticity: Common Basis for a Near-Ubiquitous Phenomenon, 1st ed, Springer, Berlin, Heidelberg, 2018.
  18. J. -Y. Lee, J. -S. Hong, S. -H. Kang, and Y. -K. Lee : Mater. Sci. Eng. A, 809 (2021) 140972. https://doi.org/10.1016/j.msea.2021.140972
  19. Y. Z. Tian, Y. Bai, M. C. Chen, A. Shibata, D. Terada, and N. Tsuji : Metall. Mater. Trans. A, 45(12) (2014) 5300-5304. https://doi.org/10.1007/s11661-014-2552-2
  20. Y. Z. Tian, Y. Bai, L. J. Zhao, S. Gao, H. K. Yang, A. Shibata, Z. F. Zhang, and N. Tsuji : Mater. Charact., 126 (2017) 74-80. https://doi.org/10.1016/j.matchar.2016.12.026
  21. Y. Onuki, A. Hoshikawa, S. Sato, T. Ishigaki, and T. Tomida : J. Mater. Sci., 52 (2017) 11643-11658. https://doi.org/10.1007/s10853-017-1309-x
  22. V. Torganchuk, I. Vysotskiy, S. Malopheyev, S. Mironov, and R. Kaibyshev : Mater. Sci. Eng. A, 746 (2019) 248-258. https://doi.org/10.1016/j.msea.2019.01.022
  23. S. Takaki, K. Fukunaga, J. Syarif, and T. Tsuchiyama : Mater. Trans., 45(7) (2004) 2245-2251. https://doi.org/10.2320/matertrans.45.2245
  24. H. Watanabe, K. Kurimoto, T. Uesugi, Y. Takigawa, and K. Higashi : Philos. Mag. A, 93 (2013) 2913-2931. https://doi.org/10.1080/14786435.2013.793460
  25. S. Hashimoto, F. Moriwaki, T. Mimaki, and S. Miura : Sliding along the interphase boundary in austenite/ferrite duplex stainless steel bicrystals, in: S. Hori (Ed.), Superplasticity in Advanced Materials, The Japan Soc. Res. on Superplasticity, (1991) 23-32.
  26. J. K. Mackenzie : Biometrika, 45(1-2) (1958) 229-240. https://doi.org/10.2307/2333059