• 제목/요약/키워드: Lorentzian metric

검색결과 24건 처리시간 0.019초

EINSTEIN LIGHTLIKE HYPERSURFACES OF A LORENTZIAN SPACE FORM WITH A SEMI-SYMMETRIC METRIC CONNECTION

  • Jin, Dae Ho
    • 대한수학회논문집
    • /
    • 제28권1호
    • /
    • pp.163-175
    • /
    • 2013
  • In this paper, we prove a classification theorem for Einstein lightlike hypersurfaces M of a Lorentzian space form ($\bar{M}$(c), $\bar{g}$) with a semi-symmetric metric connection subject such that the second fundamental forms of M and its screen distribution S(TM) are conformally related by some non-zero constant.

LEFT INVARIANT LORENTZIAN METRICS AND CURVATURES ON NON-UNIMODULAR LIE GROUPS OF DIMENSION THREE

  • Ku Yong Ha;Jong Bum Lee
    • 대한수학회지
    • /
    • 제60권1호
    • /
    • pp.143-165
    • /
    • 2023
  • For each connected and simply connected three-dimensional non-unimodular Lie group, we classify the left invariant Lorentzian metrics up to automorphism, and study the extent to which curvature can be altered by a change of metric. Thereby we obtain the Ricci operator, the scalar curvature, and the sectional curvatures as functions of left invariant Lorentzian metrics on each of these groups. Our study is a continuation and extension of the previous studies done in [3] for Riemannian metrics and in [1] for Lorentzian metrics on unimodular Lie groups.

THREE-DIMENSIONAL LORENTZIAN PARA-KENMOTSU MANIFOLDS AND YAMABE SOLITONS

  • Pankaj, Pankaj;Chaubey, Sudhakar K.;Prasad, Rajendra
    • 호남수학학술지
    • /
    • 제43권4호
    • /
    • pp.613-626
    • /
    • 2021
  • The aim of the present work is to study the properties of three-dimensional Lorentzian para-Kenmotsu manifolds equipped with a Yamabe soliton. It is proved that every three-dimensional Lorentzian para-Kenmotsu manifold is Ricci semi-symmetric if and only if it is Einstein. Also, if the metric of a three-dimensional semi-symmetric Lorentzian para-Kenmotsu manifold is a Yamabe soliton, then the soliton is shrinking and the flow vector field is Killing. We also study the properties of three-dimensional Ricci symmetric and 𝜂-parallel Lorentzian para-Kenmotsu manifolds with Yamabe solitons. Finally, we give a non-trivial example of three-dimensional Lorentzian para-Kenmotsu manifold.

SOME NOTES ON LP-SASAKIAN MANIFOLDS WITH GENERALIZED SYMMETRIC METRIC CONNECTION

  • Bahadir, Oguzhan;Chaubey, Sudhakar K.
    • 호남수학학술지
    • /
    • 제42권3호
    • /
    • pp.461-476
    • /
    • 2020
  • The present study initially identify the generalized symmetric connections of type (α, β), which can be regarded as more generalized forms of quarter and semi-symmetric connections. The quarter and semi-symmetric connections are obtained respectively when (α, β) = (1, 0) and (α, β) = (0, 1). Taking that into account, a new generalized symmetric metric connection is attained on Lorentzian para-Sasakian manifolds. In compliance with this connection, some results are obtained through calculation of tensors belonging to Lorentzian para-Sasakian manifold involving curvature tensor, Ricci tensor and Ricci semi-symmetric manifolds. Finally, we consider CR-submanifolds admitting a generalized symmetric metric connection and prove many interesting results.

HALF LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN SPACE FORM WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

  • Jin, Dae Ho
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제21권1호
    • /
    • pp.39-50
    • /
    • 2014
  • In this paper, we study screen quasi-conformal irrotational half lightlike submanifolds M of a semi-Riemannian space form $\tilde{M}(c)$ admitting a semi-symmetric non-metric connection, whose structure vector field ${\zeta}$ is tangent to M. The main result is a classification theorem for such Einstein half lightlike submanifolds of a Lorentzian space form admitting a semi-symmetric non-metric connection.

EINSTEIN LIGHTLIKE HYPERSURFACES OF A LORENTZ SPACE FORM WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

  • Jin, Dae Ho
    • 대한수학회보
    • /
    • 제50권4호
    • /
    • pp.1367-1376
    • /
    • 2013
  • We study Einstein lightlike hypersurfaces M of a Lorentzian space form $\tilde{M}(c)$ admitting a semi-symmetric non-metric connection subject to the conditions; (1) M is screen conformal and (2) the structure vector field ${\zeta}$ of $\tilde{M}$ belongs to the screen distribution S(TM). The main result is a characterization theorem for such a lightlike hypersurface.

ON THE BIHARMONICITY OF VECTOR FIELDS ON PSEUDO-RIEMANNIAN MANIFOLDS

  • Amina Alem;Bouazza Kacimi;Mustafa Ozkan
    • 호남수학학술지
    • /
    • 제45권2호
    • /
    • pp.300-315
    • /
    • 2023
  • In this article, we deal with the biharmonicity of a vector field X viewed as a map from a pseudo-Riemannian manifold (M, g) into its tangent bundle TM endowed with the Sasaki metric gS. Precisely, we characterize those vector fields which are biharmonic maps, and find the relationship between them and biharmonic vector fields. Afterwards, we study the biharmonicity of left-invariant vector fields on the three dimensional Heisenberg group endowed with a left-invariant Lorentzian metric. Finally, we give examples of vector fields which are proper biharmonic maps on the Gödel universe.