• Title/Summary/Keyword: Local cohomology module

Search Result 35, Processing Time 0.02 seconds

COHEN-MACAULAY MODULES OVER NOETHERIAN LOCAL RINGS

  • Bahmanpour, Kamal
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.373-386
    • /
    • 2014
  • Let (R,m) be a commutative Noetherian local ring. In this paper we show that a finitely generated R-module M of dimension d is Cohen-Macaulay if and only if there exists a proper ideal I of R such that depth($M/I^nM$) = d for $n{\gg}0$. Also we show that, if dim(R) = d and $I_1{\subset}\;{\cdots}\;{\subset}I_n$ is a chain of ideals of R such that $R/I_k$ is maximal Cohen-Macaulay for all k, then $n{\leq}{\ell}_R(R/(a_1,{\ldots},a_d)R)$ for every system of parameters $a1,{\ldots},a_d$ of R. Also, in the case where dim(R) = 2, we prove that the ideal transform $D_m(R/p)$ is minimax balanced big Cohen-Macaulay, for every $p{\in}Assh_R$(R), and we give some equivalent conditions for this ideal transform being maximal Cohen-Macaulay.

FINITENESS PROPERTIES OF EXTENSION FUNCTORS OF COFINITE MODULES

  • Irani, Yavar;Bahmanpour, Kamal
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.649-657
    • /
    • 2013
  • Let R be a commutative Noetherian ring, I an ideal of R and T be a non-zero I-cofinite R-module with dim(T) ${\leq}$ 1. In this paper, for any finitely generated R-module N with support in V(I), we show that the R-modules $Ext^i_R$(T,N) are finitely generated for all integers $i{\geq}0$. This immediately implies that if I has dimension one (i.e., dim R/I = 1), then $Ext^i_R$($H^j_I$(M), N) is finitely generated for all integers $i$, $j{\geq}0$, and all finitely generated R-modules M and N, with Supp(N) ${\subseteq}$ V(I).

CASTELNOUVO-MUMFORD REGULARITY OF GRADED MODULES HAVING A LINEAR FREE PRESENTATION

  • Ahn, Jeaman
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.4
    • /
    • pp.777-787
    • /
    • 2009
  • In this paper we investigate the upper bound on the Castelnuovo-Mumford regularity of a graded module with linear free presentation. Let M be a finitely generated graded module over a polynomial ring R with zero dimensional support. We prove that if M is generated by elements of degree $d{\geq}0$ with a linear free presentation $$\bigoplus^p{R}(-d-1)\longrightarrow^{\phi}\bigoplus^q{R}(-d){\longrightarrow}M{\longrightarrow}0$$, then the Castelnuovo-Mumford regularity of M is at most d+q-1. As an important application, we can prove vector bundle technique, which was used in [11], [13], [17] as a tool for obtaining several remarkable results.

  • PDF

A NOTE ON COHOMOLOGICAL DIMENSION OVER COHEN-MACAULAY RINGS

  • Bagheriyeh, Iraj;Bahmanpour, Kamal;Ghasemi, Ghader
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.275-280
    • /
    • 2020
  • Let (R, m) be a Noetherian local Cohen-Macaulay ring and I be a proper ideal of R. Assume that βR(I, R) denotes the constant value of depthR(R/In) for n ≫ 0. In this paper we introduce the new notion γR(I, R) and then we prove the following inequalities: βR(I, R) ≤ γR(I, R) ≤ dim R - cd(I, R) ≤ dim R/I. Also, some applications of these inequalities will be included.

COLOCALIZATION OF LOCAL HOMOLOGY MODULES

  • Rezaei, Shahram
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.167-177
    • /
    • 2020
  • Let I be an ideal of Noetherian local ring (R, m) and M an artinian R-module. In this paper, we study colocalization of local homology modules. In fact we give Colocal-global Principle for the artinianness and minimaxness of local homology modules, which is a dual case of Local-global Principle for the finiteness of local cohomology modules. We define the representation dimension rI (M) of M and the artinianness dimension aI (M) of M relative to I by rI (M) = inf{i ∈ ℕ0 : HIi (M) is not representable}, and aI (M) = inf{i ∈ ℕ0 : HIi (M) is not artinian} and we will prove that i) aI (M) = rI (M) = inf{rIR𝖕 (𝖕M) : 𝖕 ∈ Spec(R)} ≥ inf{aIR𝖕 (𝖕M) : 𝖕 ∈ Spec(R)}, ii) inf{i ∈ ℕ0 : HIi (M) is not minimax} = inf{rIR𝖕 (𝖕M) : 𝖕 ∈ Spec(R) ∖ {𝔪}}. Also, we define the upper representation dimension RI (M) of M relative to I by RI (M) = sup{i ∈ ℕ0 : HIi (M) is not representable}, and we will show that i) sup{i ∈ ℕ0 : HIi (M) ≠ 0} = sup{i ∈ ℕ0 : HIi (M) is not artinian} = sup{RIR𝖕 (𝖕M) : 𝖕 ∈ Spec(R)}, ii) sup{i ∈ ℕ0 : HIi (M) is not finitely generated} = sup{i ∈ ℕ0 : HIi (M) is not minimax} = sup{RIR𝖕 (𝖕M) : 𝖕 ∈ Spec(R) ∖ {𝔪}}.