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CASTELNOUVO-MUMFORD REGULARITY OF
GRADED MODULES HAVING A LINEAR FREE

PRESENTATION

Jeaman Ahn*

Abstract. In this paper we investigate the upper bound on the
Castelnuovo-Mumford regularity of a graded module with linear
free presentation. Let M be a finitely generated graded module
over a polynomial ring R with zero dimensional support. We prove
that if M is generated by elements of degree d ≥ 0 with a linear
free presentation

p⊕
R(−d− 1)

φ→
q⊕

R(−d)→M → 0,

then the Castelnuovo-Mumford regularity of M is at most d+q−1.
As an important application, we can prove vector bundle technique,
which was used in [11], [13], [17] as a tool for obtaining several
remarkable results.

1. Introduction

Let R = K[x0, . . . , xn] be the coordinate ring of Pn where K is an
algebraically closed field of characteristic zero. David Mumford [16]
defined the regularity of a coherent sheaf on projective space in order to
generalize the idea of Castelnouvo’s base point free pencil trick, which is
useful in controlling the vanishing of cohomology of a sheaf. A coherent
sheaf F on Pn is d-regular if

H i(Pn,F(d− i) = 0) for every i ≥ 1.

We will write reg(F) for the least number d such that F is d-regular.
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The definition for a finitely generated graded R-module M , which
extends that for sheaves, was given by Eisenbud and Goto [6]. Let

F• : 0 −→ Ft
φt−→ · · · φ3−→ F2

φ2−→ F1
φ1−→ F0

φ0−→ M −→ 0

be the minimal free resolution of M where Fi = ⊕jR(−j)βi,j . The reg-
ularity of M is defined by the supremum of the numbers j − i with
non-vanishing betti number βi,j . We will write reg(M) for this number.
The most important case is when M is the defining ideal IX of a closed
subscheme X ⊂ Pn. In this case, reg(IX) is called the regularity of X
and we denote it reg(X).

In [2], Bayer and Mumford have shown that Castelnuovo-Mumford
regularity is exactly same as the maximum degree of the reduced Gröbner
bases of a homogeneous ideal I in generic coordinates and they consid-
ered it as an important measure of how complicated the ideal I is. In
this context, there has been several results which establish bounds for
the Castelnuovo-Mumford regularity. In the worst case, a doubly ex-
ponential bound for the regularity in terms of the maximum degree of
generators was given by Giusti [8] and Galligo [9] in characteristic 0 and
recently, by Caviglia-Sbarra [3] for arbitrary field. Mayer and Meyer [15]
showed this bound is the best possible. However, many results shows
that the bound on the regularity of a closed subscheme X ⊂ Pn is much
smaller, like the nth power of the maximum degree of generators of IX

or better, if X is nice geometric property. (see [1], [2], [10], [11], [12],
[14], [18], and [19]).

The goal of this paper is to give a bound of Castelnuovo-Mumford
regularity of a finitely generated graded R-module M in terms of the
number of generators and their degrees. We are mainly concerned with
the case that M is supported in dimension zero and it has a linear free
presentation. As an important application, we will prove vector bundle
technique, which was used in [11], [13], [17] as a tool for obtaining several
remarkable results.

2. Preliminaries

Many of the preliminaries we will discuss in this section are based on
the fundamental work of Eisenbud and Goto which describes Castelnuovo-
Mumford regularity using local cohomology. For precise statements, we
give notations and recall definitions. Through the paper, we use the
following usual notations:

• R = K[x0, · · · , xn] : a polynomial ring in n + 1 variables over K
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• m = (x0, . . . , xn) : the homogeneous maximal ideal of R.
• F : a coherent sheaf on Pn.
• M : a finitely generated graded R-module.

The most important characterization of Castelnuovo-Mumford regu-
larity is cohomological. One way to state it is to use local cohomology.
Eisenbud-Goto gave a connection between the regularity for a coherent
sheaf and the regularity of graded modules in [6] using local cohomology.
For a graded R-module M , the zeroth local cohomology of M is

H0
m(M) := {a ∈ M |mda = 0 for some d }.

Since H0
m(M) is an left exact functor, it is natural to study its derived

functors. For every i ≥ 1, the i-th local cohomology of M is defined by
the derived functors of H0

m(M), which we call H i
m(M).

The local cohomology is related to the sheaf cohomology in a simple
way. Using Čech cohomology one can prove the following result.

Proposition 2.1 (Local cohomology and Sheaf Cohomology). Let M
be a graded R-module, and let F be the corresponding quasi-coherent
sheaf on Pn. Then we have

(a) There is an exact sequence of graded R-modules

0 → H0
m(M) → M →

⊕
d

H0(F(d)) → H1
m(M) → 0.

(b) For every i ≥ 2,

H i
m(M) =

⊕
d

H i−1(Pn,F(d)).

Proof. See Proposition A1.11. in [5].

Since the local cohomology is actually dual to the homology of the
complex Hom(F, R), where F is a free resolution of M , the regularity
can be formulated in terms of local cohomology.

Theorem 2.2 (Characterization of Regularity: Cohomology). Let M
be a finitely generated graded R-module and let ri = max{e |H i

m(M)e 6=
0 } for each i ≥ 0. Then the followings are equivalent.

(a) reg(M) ≤ d.
(b) ri + i ≤ d for all i ≥ 0.
(c) r0 ≤ d and H i

m(M)d−i+1 = 0 for all i > 0.

Proof. See Theorem 4.3 in [5].
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From the associated long exact sequence in local cohomology and The-
orem 2.2 we can easily see the following results (Corollary 4.4 in [5] and
Corollary 20.19. in [4]).

Corollary 2.3. If M is a graded R-module of finite length, then

reg(M) = max{ d |Md 6= 0 }

Corollary 2.4. Suppose that 0 → M ′ → M → M ′′ → 0 is an exact
sequence of finitely generated graded R-modules. Then we have

(a) reg(M ′) ≤ max{reg(M), reg(M ′′) + 1};
(b) reg(M) ≤ max{reg(M ′), reg(M ′′)}
(c) reg(M ′′) ≤ max{reg(M), reg(M ′)− 1}

Definition 2.5. Let M be a finitely generated S-modlule, with free
presentation

Rp φ→ Rq → M → 0.

Then the ideal generated by q × q minors, written Iq(φ), depends only
on the map of free modules φ not on the choice of bases. We call it the
zeroth Fitting ideal of the map φ.

There is a close relation between the annihilator and the zeroth Fit-
ting ideal. We will use the following result in this paper.

Theorem 2.6. If M is generated by t elements as a R-module, then

(annM)t ⊂ Iq(φ) ⊂ annM.

Proof. Refer to Propostion 20.7. in [4].

Let F = R(−1)p and G = Rq where p ≥ q. Consider the Eagon-

Northcott complex of a graded preserving map F
φ→ G, which furnishes

an approximation to a resolution of the zeroth Fitting ideal Iq(φ) (see
page 209 in [4]):

EN(φ) : 0 → (Symp−qG)∗ ⊗
∧p F → (Symp−q−1G)∗ ⊗

∧p−1 F

→ · · · → (Sym2G)∗ ⊗
∧q+2 F → G∗ ⊗

∧q+1 F

→
∧q F

∧qφ→
∧q G ∼= R → R/Iq(φ) → 0.

Note that each free part of Eagon-Northcott complex is given by

(SymjG)∗ ∼=
(q+j−1

j )⊕
R and

i∧
F ∼=

(p
i)⊕

R(−i),
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and thus we have (SymjG)∗⊗
∧q+j−1 F ∼=

⊕(q+j−1
j )( p

q+j−1) R(−j−q+1)
such that its regularity is at least j + q − 1.

To bound the regularity of the Fitting ideal of a graded module M
with linear free presentation will be the technical heart of the paper. For
the proof of the main result we will use the following theorem, which
can be found in [5].

Theorem 2.7 (Theorem A2.59. in [5]). Let F = Rp φ→ G = Rq with
p ≥ q be a map of free R-modules. Then the zeroth Fitting ideal Iq(φ)
annihilates the homology of EN(φ).

3. Regularity of the annihilator of a graded module

In this section, we will show that the regularity bound for Fitting
ideal of a graded module with linear free presentation can be given by
applying Lemma 3.1 to the Eagon-Northcott complex. From this, we
will give an upper bound for the regularity of the annihilator of a graded
module. The following lemma is the pivotal result of this paper.

Lemma 3.1. Suppose that

F• : 0 −→ Ft
φt−→ · · · φ3−→ F2

φ2−→ F1
φ1−→ F0

is a complex of finitely generated graded S-modules, and there is an
integer d such that

• the homology Hi(F•) is supported in dimension zero for all i ≥ 1;
and

• reg(Fi) ≤ d + i for all i ≥ 0.

Then reg(cokerφ1) ≤ d and reg(im φ1) ≤ d + 1.

Proof. Let us try to prove by induction on t. Suppose that t =
0 such that we have a map 0

φ1→ F0. Then F0
∼= coker φ1 and thus

reg(coker φ1) = reg(F0) ≤ d.
For t > 0, note that we have the long exact sequence in local coho-

mology H i
m(−) from

0 → H1(F•) → coker φ2 → im φ1 → 0,

where m is the unique homogeneous maximal ideal of R. Since H1(F•) is
supported in dimension zero, we have H i

m(H1(F•)(s)) = 0 for all i ≥ 1.
Hence the map

H i
m(coker φ2(s)) → H i

m(im φ1(s))
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is surjective for every i ≥ 0 and s. By Theorem 2.2, we have that
reg(im φ1) ≤ reg(coker φ2) and, by induction argument on t, reg(coker φ2)
≤ d + 1. Hence we see reg(im φ1) ≤ d + 1. Applying Corollary 2.4 to
the short exact sequence

(3.1) 0 → im φ1 → F0 → cokerφ1 → 0,

we conclude that

reg(cokerφ1) ≤ max{reg(F0), reg(im φ1)− 1} ≤ d,

and we are done.

From Lemma 3.1, we derive a general bound on the regularity of
Fitting ideals.

Proposition 3.2. Let M be a finitely generated graded S-module
having a linear free presentaion

p⊕
R(−1)

φ→
q⊕

R → M → 0,

such that dim M = 0. Then we have reg(Iq(φ)) ≤ q.

Proof. Consider a free presentation of M

F =
p⊕

R(−1)
φ−→ G =

q⊕
R → M → 0.

Let Iq(φ) be the zeroth Fitting ideal of the map φ. By assumption,
we know dim(M) = dim(R/ann(M)) = 0. Applying Theorem 2.6 to
ann(M) and It(φ), we see at once that

dim(R/Iq(φ)) = dim(R/ann(M)) = dim(M) = 0.

Suppose that

E• : 0 −→ Et
φt−→ · · · φ3−→ E2

φ2−→ E1
φ1−→ S → S/Iq(φ)) → 0

is the Eagon-Northcott complex EN(φ), where Ei = (Symi−1G)∗ ⊗∧q−1+i F . By Theorem 2.7, the ideal Iq(φ) annihilates the homology of
EN(φ) and so Iq(φ) ⊂ ann(Hi(EN(φ))). This implies that, for all i ≥ 1,

dim Hi(EN(φ)) ≤ dim R/Iq(φ) = 0.

Hence the homology Hi(E•) is supported in dimension zero for all i ≥ 1
and reg(Ei) = q + i − 1, so we may take d = q − 1 in Lemma 3.1 and
the result follows.

Corollary 3.3. With the same assumption as in Proposition 3.2,

reg(ann(M)) ≤ q.
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Proof. Let m be the unique maximal homogeneous ideal of R. Since
M is a module of dimension zero, we see that ann(M) and Iq(φ) are
homogeneous ideal of R supported in dimension zero. By Corollary 2.3,
we have

reg(ann(M)) = 1 + max{e |R/ann(M)e = 0 } = min{e | ann(M)e = me }
reg(Iq(φ)) = 1 + max{e |R/Iq(φ))e = 0 } = min{e | Iq(φ))e = me }.

Then it follows directly from Theorem 2.6 and Proposition 3.2 that

reg(ann(M)) ≤ reg(Iq(φ)) ≤ q,

as we wished.

4. Regularity of a graded module with linear free presenta-
tion

Now we are ready to prove the main result in this paper.

Theorem 4.1. If M is a finitely generated graded R-module having
a linear free presentaion

p⊕
R(−d− 1)

φ→
q⊕

R(−d) → M → 0,

such that dim M = 0 then we have reg(M) ≤ d + q − 1.

Proof. Note that we may assume that d = 0 and it suffices to show
that the regularity is at least q − 1 since the module M(d) is generated
by elements of degree 0 and reg(M(d)) = reg(M) − d. For the proof,
we do induction on q ≥ 1. If q = 1 then there is a homogeneous ideal
J ⊂ R generated by elements of degree 1 such that M ∼= R/J and we
have

reg(M) = reg(R/J) = reg(J)− 1.

Note that reg(J) = 0 is complete intersection ideal generated by linear
forms whose the minimal free resolution is given by Koszul complex.
Hence we have reg(M) = 0 = q − 1.

Suppose q > 1 and let M/mM = 〈m̄1, . . . , m̄t〉, where t ≤ q. By
Nakayama Lemma, we know that M = Rm1 + · · ·+ Rmt. Consider the
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following commutative diagram:

(4.1)

0 0

↓ ↓
0 → ann(m1) → R → Rm1 → 0

↓ ↓

R(−1)p φ→ Rq → M → 0

‖ ↓ ↓
R(−1)p → Rq−1 → M/Rm1 → 0

↓ ↓
0 0

Since Supp(M) = Supp(Rm1) ∪ Supp(M/Rm1) and M is supported in
dimension zero, we see that dim(M/Rm1) = 0 and dim(Rm1) = 0. By
induction hypothesis, we know that

(4.2) reg(M/Rm1) ≤ q − 2.

On the other hand, note that ann(M) ⊂ ann(m1) and they are homo-
geneous ideal of R supported in dimension zero. By Corollary 2.3 and
3.3, we see that

(4.3) reg(ann(m1)) ≤ reg(ann(M)) ≤ q.

Hence reg(Rm1) = reg(ann(m1))− 1 ≤ q − 1, and so we conclude that

reg(M) ≤ max{reg(Rm1), reg(M/Rm1)} ≤ q − 1,

as we wished.

As an important application of Theorem 4.1 we can prove vector
bundle technique, which is used in [11], [13], [17] as a tool for obtaining
several remarkable results.

Theorem 4.2. If a coherent sheaf M on Pn fits into the following
exact sequence

(4.4) 0 →M→
p⊕
OPn(−d− 1) →

q⊕
OPn(−d) → 0.

Then we have reg(M) ≤ d + q + 1.

Proof. Note that it suffices to prove the case of d = 0. Consider the
following long exact sequence in sheaf cohomology from (4.4):

(4.5) · · · → H i(Pn,M(`)) → H i(Pn,Op
P(`)) → H i(Pn,Oq

P(`)) → · · ·
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Then we have H i+1(Pn,M(t)) = 0 for all i ≥ 1 and t ≥ 0 and the exact
sequence

0 → F0 → R(−1)p → Rq → F1 → 0,

where Fi =
⊕

`∈Z H i(Pn,M(`)) for each i ≥ 0. Note that the graded
R-module F1 =

⊕
`∈Z H1(X,M(`)) has a linear free presentation and

it has zero dimensional support by Serre’s Vanishing theorem. Hence it
follows from Theorem 4.1 that

H1(Pn,M(`)) = 0 for all ` ≥ q − 1.

Hence we conclude that

reg(M) = min{ ` + i |H i(Pn,M(`)) = 0, i ≥ 1} ≤ q,

which implies reg(M) ≤ q and the result follows.

Example 4.3 (Theorem 1.1 in [13]). Let X ⊂ Pn be a smooth projec-
tive variety embedded by a very ample line bundle L. Suppose that X is
projectively normal and the defining ideal IX has the following minimal
free presentation:

R(−3)α2 → R(−2)α1 → IX → 0,

which means IX is generated by quadric polynomials and it has only
linear syzygies. Consider an embedding Y ⊂ P(V ) of X given by a sub-
system V ⊂ H0(X,L) of codimension t. Then E = ⊕`∈ZH0(X,OX(`))
can be regarded as a finitely generated graded S = Sym(V )-module and
its minimal free presentation is of the form:

(4.6) S(−2)α → S ⊕ S(−1)t → E → 0

for some α > 0. Hence we have the following commutative diagram:

(4.7)

0 0

↓ ↓
S → S/IY → 0

↓ ↓ ϕ

S(−2)α → S ⊕ S(−1)t → E → 0

‖ ↓ ↓
S(−2)α → S(−1)t → cokerϕ → 0

↓ ↓
0 0
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Since the map ϕ is induced by an isomorphic projection X → Y ⊂ Pn−1

a graded S-module cokerϕ is supported in dimension zero. Hence we
have the regularity of cokerϕ is at most t by Theorem 4.1 and thus

reg(Y ) = reg(S/IY ) + 1 ≤ max{reg(E) + 1, reg(cokerϕ) + 2}.

Since X is projectively normal, we know that reg(X) = reg(E) + 1 and
we conclude that

reg(Y ) ≤ max{reg(X), t + 2}.
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