• Title/Summary/Keyword: Load capacitance

Search Result 158, Processing Time 0.033 seconds

Determining Method of Minimum-capacitance for Self-excited Induction Generator (자기 여자 유도 발전기의 최소 커패시턴스의 결정법)

  • Jin, Chung-Min;Jwa, Chong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.729-731
    • /
    • 2000
  • This paper presents a simple method for determining the minimum value of capacitance required for initiating self excitation in three-phase self-excited induction generator. Based on the steady-state equivalent circuit model, this paper presents simple and direct method to find the minimum capacitance requirement under R-L load. Using the loop impedance and nodal admittance. the minimum capacitance is determined by self excitation condition. These computed values can be used to predict practically the minimum value of the terminal voltage required for self-excitation. To maintain a constant terminal voltage, a method for determining the frequency, terminal capacitance, and exciting reactance is also described.

  • PDF

A Study on Optimal Design of Capacitance for Active Power Decoupling Circuits (능동 전력 디커플링 회로의 커패시턴스 최적 설계에 관한 연구)

  • Baek, Ki-Ho;Park, Sung-Min;Chung, Gyo-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.3
    • /
    • pp.181-190
    • /
    • 2019
  • Active power decoupling circuits have emerged to eliminate the inherent second-order ripple power in a single-phase power conversion system. This study proposes a design method to determine the optimal capacitance for active power decoupling circuits to achieve high power density. Minimum capacitance is derived by analyzing ripple power in a passive power decoupling circuit, a buck-type circuit, and a capacitor-split-type circuit. Double-frequency ripple power decoupling capabilities are also analyzed in three decoupling circuits under a 3.3 kW load condition for a battery charger application. To verify the proposed design method, the performance of the three decoupling circuits with the derived minimum capacitance is compared and analyzed through the results of MATLAB -Simulink and hardware-in-the-loop simulations.

Load Current Prediction Method for a DC-DC Converter in Plasma Display Panel

  • Chae, S.Y.;Hyun, B.C.;Kim, W.S.;Cho, B.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.609-612
    • /
    • 2007
  • This paper describes a new method to predict the load current of a dc-dc converter. The load current is calculated using the video information of the PDP. The output capacitance of the dc-dc converter can be reduced by utilizing the predicted load current, which results in a cost reduction of the power system in the PDP.

  • PDF

Capacitance Estimation of DC-Link Capacitors of Three-Phase AC/DC/AC PWM Converters using Input Current Injection (입력전류 주입을 이용한 3상 AC/DC/AC PWM 컨버터의 직류링크 커패시터 용량 추정)

  • 이강주;이동춘;석줄기
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.173-179
    • /
    • 2003
  • In this paper, a novel on-line dc capacitance estimation method for the three-phase PWM converter is proposed. At no load, input current at a low frequency is injected, which causes dc voltage ripple. With the at voltage and current ripple components of the dc side, the capacitance can be calculated. Experimental result shows that the estimation error is less than 2%.

Identification of DC-Link Capacitance for Single-Phase AC/DC PWM Converters

  • Pu, Xing-Si;Nguyen, Thanh Hai;Lee, Dong-Choon;Lee, Suk-Gyu
    • Journal of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.270-276
    • /
    • 2010
  • In this paper, a capacitance estimation scheme for DC-link capacitors for single-phase AC/DC PWM converters is proposed. Under the no-load condition, a controlled AC current (30[Hz]) is injected into the input side, which then causes AC voltage ripples at the DC output side. Or, a controlled AC voltage can be directly injected into the DC output side. By extracting the AC voltage/current and power components on the DC output side using digital filters, the capacitance value can be calculated, where the recursive least squares (RLS) algorithm is used. The proposed methods can be simply implemented with software only and additional hardware is not required. From the experiment results, a high accuracy estimation of capacitances less than 0.85% has been obtained.

Improvement of Electrochemical Characteristics and Study of Deterioration of Aluminum Foil in Organic Electrolytes for EDLC

  • Lee, Mun-Soo;Kim, Donna H.;Kim, Seung-Cheon
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.9-19
    • /
    • 2018
  • The anodic behavior of aluminum (Al) foils with varying purity, capacitance, and withstand voltage in organic electrolytes was examined for EDLC. The results of cyclic voltammetry (CV) and chronoamperometry (CA) experiments showed that the electrochemical stability improves when Al foil has higher purity, lower capacitance, and higher withstand voltage. To improve the electrochemical stability of EDLC current collectors made of low-purity foil (99.4% Al foil), the foil was modified by chemical etching to reduce its capacitance to $60{\mu}F/cm^2$ and forming to have withstand a voltage of 3 Vf. EDLC cells using the modified Al foil as a current collector were made to 2.7 V with 360 F, and a constant voltage load test was subsequently performed for 2500 hours at high temperature under a rated voltage of 2.7 V. The reliability and stability of the EDLC cell improved when the modified Al foil was used as a current collector. To understand the deterioration process of the Al current collector, standard cells made of conventional Al foil under a constant voltage load test were disassembled, and the surface changes of the foil were measured every 500 hours. The Al foil became increasingly corroded, causing the adhesion between the AC coating layer and the Al foil to weaken, and it was confirmed that partial AC coating layer peeling occurred.

Analysis of Small Signal Stability for SSR on Generator Loading Condition (계통 운전조건에 따른 축 비틀림 전동 미소신호안정도 해석)

  • Kim, D.J.;Moon, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.85-87
    • /
    • 2002
  • The paper describes the formulation of state matrix equations from the linearized multi-machine power system including network dynamics and the application of IEEE First Benchmark Model. The eigenvalues of IEEE First Benchmark Model are investigated not only by changing the compensation of series capacitance at no-load conditions, but also by varying the generator loading at fixed compensation of capacitance. In addition, the pure electrical self-excited mode is also examined by an eigen analysis and time domain simulation.

  • PDF

The Analysis of Bearing Current using Equivalent Circuit Parameters by FEM (FEM이 적용된 등가회로 파라미터에 의한 축전류 해석)

  • Jun, Ji-Hoon;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.55-57
    • /
    • 2005
  • This paper deals with the analysis of bearing current in H-bridge seven level multilevel inverter fed induction motor. In the previous researches utilized electromagnetic equations to derive the parasitic capacitance or measured capacitance parameters, but we used FEM to derive parasitic capacitances and defined the equivalent circuit parameters in our strategy. Then we compared suggested method with conventional method in 60 [Hz] no load condition.

  • PDF

A Study on the Characteristics of BiCMOS and CMOS Inverters (BiCMOS 및 CMOS로 구현된 Inverter에 대한 특성비교)

  • 정종척;이계훈;우영신;성만영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.11a
    • /
    • pp.93-96
    • /
    • 1993
  • BiCMOS technology, which combines CMOS and bipolar technology, offers the possibility of achieving both very high density and high performance. In this paper, the characteristics of BiCMOS and CMOS circuits, especilly the delay time is studied. BiCMOS inverter, which has high drive ability because of bipolar transistor, drives high load capacitance and has low-power characteristics because the current flows only during switching transient just like the CMOS gate. BiCMOS inverter has the less dependence on load capacitance than CMOS inverter. SPICE that has been used for electronic circuit analysis is chosen to simulate these circuits and the characteristics is discussed.

  • PDF

Analysis of Operating Characteristic of Self Excited Induction Generator with Steinmetz Connection (스타인메츠결선 자기여자 유도발전기의 운전특성 분석)

  • Kang, Sang-Su;Jwa, Chong-Keun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.4
    • /
    • pp.383-387
    • /
    • 2008
  • This paper analyzes the operation characteristics of a self excited induction generator with Steinmetz connection. For this analysis, the symmetrical components analysis is used to obtain the related expressions and the excitation capacitance and the magnetizing reactance are determined in turn by the condition of self excitation which includes the input impedance of the generator as viewed across load terminals. Two simultaneous equations of the condition of self excitation itself are solved by using the real and imaginary function in an application software. This method is applied to simulate the operation characteristics when the generator is driven at rated speed and the specified excitation capacitor is connected across the lagging phase. The results show that better operation characteristics except generated frequency are obtained by using relatively large excitation capacitance and resistive load.