DOI QR코드

DOI QR Code

Improvement of Electrochemical Characteristics and Study of Deterioration of Aluminum Foil in Organic Electrolytes for EDLC

  • Lee, Mun-Soo (Dept. of smart convergence consulting, Hansung University) ;
  • Kim, Donna H. (Samwha USA Inc) ;
  • Kim, Seung-Cheon (Dept. of IT convergence engineering, Hansung University)
  • Received : 2017.11.07
  • Accepted : 2017.12.28
  • Published : 2018.03.31

Abstract

The anodic behavior of aluminum (Al) foils with varying purity, capacitance, and withstand voltage in organic electrolytes was examined for EDLC. The results of cyclic voltammetry (CV) and chronoamperometry (CA) experiments showed that the electrochemical stability improves when Al foil has higher purity, lower capacitance, and higher withstand voltage. To improve the electrochemical stability of EDLC current collectors made of low-purity foil (99.4% Al foil), the foil was modified by chemical etching to reduce its capacitance to $60{\mu}F/cm^2$ and forming to have withstand a voltage of 3 Vf. EDLC cells using the modified Al foil as a current collector were made to 2.7 V with 360 F, and a constant voltage load test was subsequently performed for 2500 hours at high temperature under a rated voltage of 2.7 V. The reliability and stability of the EDLC cell improved when the modified Al foil was used as a current collector. To understand the deterioration process of the Al current collector, standard cells made of conventional Al foil under a constant voltage load test were disassembled, and the surface changes of the foil were measured every 500 hours. The Al foil became increasingly corroded, causing the adhesion between the AC coating layer and the Al foil to weaken, and it was confirmed that partial AC coating layer peeling occurred.

Keywords

References

  1. B.E. Conway, V. Birss, J. Wojtowicz, J. Power Sources, 1997, 66(1-2), 1-14. https://doi.org/10.1016/S0378-7753(96)02474-3
  2. R. Kotz, M. Carlen, Electrochim. Acta, 2000, 45(15), 2483-2498. https://doi.org/10.1016/S0013-4686(00)00354-6
  3. L. L. Zhang, Y. Gu, X. S. Zhao, J. Mater. Chem. A, 2013, 1(33), 9395-9408. https://doi.org/10.1039/c3ta11114h
  4. K. Naoi, S. Ishimoto, J. Miyamoto, W. Naoi, Energy Environ. Sci., 2012, 5(11), 9363-9373. https://doi.org/10.1039/c2ee21675b
  5. C. W. Liew, S. Ramesh, A. K. Arof, Energy, 2016, 109, 546-556. https://doi.org/10.1016/j.energy.2016.05.019
  6. J. R. Miller, P. Simon, Electrochem. Soc. Interface, 2008, 17(1), 31-32.
  7. J. R. Miller, P. Simon, Science, 2008, 321(5889), 651-652. https://doi.org/10.1126/science.1158736
  8. A. Burke, J. Power Sources, 2000, 91(1), 37-50. https://doi.org/10.1016/S0378-7753(00)00485-7
  9. A. Burke, Electrochim, Acta, 2007, 53(3), 1083-1091. https://doi.org/10.1016/j.electacta.2007.01.011
  10. F. Beguin, E. Frackowiak, Supercapacitors: Materials, Systems, and Applications, Wiley-VCH, 2013.
  11. P. Alotto, M. Guarnieri, F. Moro, Renew. Sustain. Energy Rev., 2014, 29, 325-335. https://doi.org/10.1016/j.rser.2013.08.001
  12. O. Hanna, S. Luski, D. Aurbach, J. Electrochem. Soc., 2017, 164(2), A231-A236. https://doi.org/10.1149/2.0901702jes
  13. X. Z. Sun, X. Zhang, H. T. Zhang, B. Huang, Y. W. Ma, J. Solid State Electrochem., 2013, 17(7), 2035-2042. https://doi.org/10.1007/s10008-013-2051-1
  14. D. Liu, Z. Jia, D. Wang, Carbon, 2016, 100, 664-677. https://doi.org/10.1016/j.carbon.2016.01.069
  15. N. Blomquist, T. Wells, B. Andres, J. Bäckström, S. Forsberg, H. Olin, Scientific Rep., 2017, 7, 39836-39842. https://doi.org/10.1038/srep39836
  16. K. Naoi, P. Simon, J. Electrochem. Soc., 2008, 17(1), 34-37.
  17. P. Simon, Y. Gogotsi, Nature Materials, 2008, 7(11), 845-854. https://doi.org/10.1038/nmat2297
  18. C. Iwakura, Y. Fukumoto, H. Inoue, S. Ohashi, S. Kobayashi, S. H. Tada, M. Abe, J. Power Sources, 1997, 68(2), 301-303. https://doi.org/10.1016/S0378-7753(97)02538-X
  19. L. J. Krause, W. Lamanna, J. Summerfield, M. Engle, G. Korba, R. Loch, R. Atanasoski, J. Power Sources, 1997, 68(2), 320-325. https://doi.org/10.1016/S0378-7753(97)02517-2
  20. J. W. Braithwaite, A. Gonzales, G. Nagasubramanian, S. J. Lucero, D. E. Peebles, J. A. Ohihausen, W. R. Cieslak, J. Electrochem. Soc., 1999, 146(2), 448-456. https://doi.org/10.1149/1.1391627
  21. H. Yang, K. Kwon, T. M. Devine, J. W. Evans, J. Electrochem. Soc., 2000, 147(12), 4399-4407. https://doi.org/10.1149/1.1394077
  22. X. Wang, E. Yasukawa, S. Mori, Electrochim. Acta, 2000, 45(17), 2677-2684. https://doi.org/10.1016/S0013-4686(99)00429-6
  23. S. S. Zhang, T. R. Jow, J. Power Sources, 2002, 109(2), 458-464. https://doi.org/10.1016/S0378-7753(02)00110-6
  24. K. Kanamura, T. Umegaki, S. Shiraishi, M. Ohashi, Z. I. Takehara, J. Electrochem. Soc., 2002, 149(2), A185-A194. https://doi.org/10.1149/1.1433471
  25. M. Morita, T. Shibata, N. Yoshimoto, M. Ishikawa, Electrochim. Acta, 2002, 47(17), 2787-2793. https://doi.org/10.1016/S0013-4686(02)00164-0
  26. M. Morita, T. Shibata, N. Yoshimoto, M. Ishikawa, J. Power Sources., 2003, 119, 784-788.
  27. S. Song, T. J. Richardson, G. V. Zhuang, T. M. Devine, J. W. Evans, Electrochim. Acta, 2004, 49(9), 1483-1490. https://doi.org/10.1016/S0013-4686(03)00930-7
  28. A. H. Whitehead, M. J. Schreiber, J. Electrochem. Soc., 2005, 152(11), A2105-A2113. https://doi.org/10.1149/1.2039587
  29. S. S. Zhang, J. Power Sources, 2006, 162(2), 1379-1394. https://doi.org/10.1016/j.jpowsour.2006.07.074
  30. C. Peng, L. Yang, Z. Zhang, K. Tachibana, Y. Yang, J. Power Sources, 2007, 173(1), 510-517. https://doi.org/10.1016/j.jpowsour.2007.05.006
  31. M. Nadherna, R. Dominko, D. Hanzel, J. Reiter, M. Gaberscek, J. Electrochem. Soc., 2009, 156(7), A619-A626. https://doi.org/10.1149/1.3133183
  32. B. Markovsky, F. Amalraj, H. E. Gottlieb, Y. Gofer, S. K. Martha, D. Aurbach, J. Electrochem. Soc., 2010, 157(4), A423-A429. https://doi.org/10.1149/1.3294774
  33. R.S. Kühnel, A. Balducci, J. Power Sources, 2014, 249, 163-171. https://doi.org/10.1016/j.jpowsour.2013.10.072
  34. P. Azais, L. Duclaux, P. Florian, D. Massiot, M. A. Lillo- Rodenas, A. Linares-Solano, J. P. Peres, C. Jehoulet, F. Beguin, J. Power Sources, 2007, 171(2), 1046-1053. https://doi.org/10.1016/j.jpowsour.2007.07.001
  35. P. Kurzweil, M. Chwistek, J. Power Sources, 2008, 176(2), 555-567. https://doi.org/10.1016/j.jpowsour.2007.08.070
  36. K. Chiba, T. Ueda, Y. Yamaguchi, Y. Oki, F. Shimodate, K. Naoi, J. Electrochem. Soc., 2011, 158(8), A872-A882. https://doi.org/10.1149/1.3593001
  37. A. M. Bittner, M. Zhu, Y. Yang, H. F. Waibel, M. Konuma, U. Starke, C. J. Weber, J. Power Sources, 2012, 203, 262-273. https://doi.org/10.1016/j.jpowsour.2011.10.083
  38. G. D. Davis, W. C. Moshier, G. G. Long, D. R. Black, J. Electrochem. Soc., 1991, 138(11), 3194-3199. https://doi.org/10.1149/1.2085392
  39. J. R. Davis, ASM specialty handbook: Aluminum and aluminum alloys, ASM International, 1993.
  40. F. Li, L. Zhang, R. M. Metzger, Chem. Mater., 1998, 10(9), 2470-2480. https://doi.org/10.1021/cm980163a
  41. J. R. Davis JR, Corrosion of aluminum and aluminum alloys, ASM International, 1999.
  42. M. Morita, T. Shibata, N. Yoshimoto, M. Ishikawa, Electrochim. Acta, 2002, 47(17), 2787-2793. https://doi.org/10.1016/S0013-4686(02)00164-0
  43. M. Stern, A. L. Geary, J. Electrochem. Soc., 1957, 104(1), 56-63. https://doi.org/10.1149/1.2428496
  44. Z. Szklarska-Smialowska, Corros. Sci., 1999, 41(9), 1743-1767. https://doi.org/10.1016/S0010-938X(99)00012-8
  45. T. P. Hoar, D. C. Mears, G. P. Rothwell, Corros. Sci., 1965, 5(4), 279-289. https://doi.org/10.1016/S0010-938X(65)90614-1
  46. N. Sato, J. Electrochem. Soc., 1982, 129(2), 255-260. https://doi.org/10.1149/1.2123808
  47. H. Masuda, M. Yotsuya, M. Asano, K. Nishio, M. Nakao, A. Yokoo, T. Tamamura, App. Phys. Lett., 2001, 78(6), 826-828. https://doi.org/10.1063/1.1344575
  48. R. Kotz, P. Ruch, D. Cericola, J. Power Sources, 2010, 195(3), 923-928. https://doi.org/10.1016/j.jpowsour.2009.08.045
  49. M. Hahn, A. Würsig, R. Gallay, P. Novak, R. Kotz, Electrochem. Commun., 2005, 7(9), 925-930. https://doi.org/10.1016/j.elecom.2005.06.015
  50. M. Hahn, R. Kötz, R. Gallay, A. Siggel, Electrochim. Acta., 2006, 52(4), 1709-1712. https://doi.org/10.1016/j.electacta.2006.01.080
  51. R. Kotz, M. Hahn, P. Ruch, R. Gallay, Electrochem. Commun., 2008, 10(3), 359-362. https://doi.org/10.1016/j.elecom.2007.12.016
  52. S. Ishimoto, Y. Asakawa, M. Shinya, K. Naoi, J. Electrochem. Soc., 2009, 156(7), A563-A571. https://doi.org/10.1149/1.3126423
  53. B. R. Strohmeier, Appl. Surf. Sci., 1989, 40(3), 249-263. https://doi.org/10.1016/0169-4332(89)90009-3
  54. A. Mozalev, A. Poznyak, I. Mozaleva, A. W. Hassel, Electrochem. Commun., 2001, 3(6), 299-305. https://doi.org/10.1016/S1388-2481(01)00157-6
  55. S. T. Myung, Y. Hitoshi, Y. K. Sun, J. Mater. Chem., 2011, 21(27), 9891-9911. https://doi.org/10.1039/c0jm04353b
  56. C. Hu, W. Qu, R. Rajagopalan, C. Randall, J. Power Sources, 2014, 272, 90-99. https://doi.org/10.1016/j.jpowsour.2014.08.043
  57. N. F. Jackson, Electrocompon. Sci. Technol., 1975, 2(1), 33-44. https://doi.org/10.1155/APEC.2.33
  58. G. O. Avwiri, F. O. Igho, Mater. Lett., 2003, 57(22), 3705-3711. https://doi.org/10.1016/S0167-577X(03)00167-8
  59. M. Abdallah, Corros. Sci., 2004, 46(8), 1981-1996. https://doi.org/10.1016/j.corsci.2003.09.031
  60. R. Xiao, K. Yan, J. Yan, J. Wang, Corros. Sci., 2008, 50(6), 1576-1583. https://doi.org/10.1016/j.corsci.2008.02.017
  61. J. K. Kim, E. O. Kim, U. J. Lee, I. B. Lee, S. H. Han, H. B. Son, S. H. Yoon, Electrochim. Acta, 2016, 219, 447-452. https://doi.org/10.1016/j.electacta.2016.10.030