Browse > Article
http://dx.doi.org/10.5229/JECST.2018.9.1.9

Improvement of Electrochemical Characteristics and Study of Deterioration of Aluminum Foil in Organic Electrolytes for EDLC  

Lee, Mun-Soo (Dept. of smart convergence consulting, Hansung University)
Kim, Donna H. (Samwha USA Inc)
Kim, Seung-Cheon (Dept. of IT convergence engineering, Hansung University)
Publication Information
Journal of Electrochemical Science and Technology / v.9, no.1, 2018 , pp. 9-19 More about this Journal
Abstract
The anodic behavior of aluminum (Al) foils with varying purity, capacitance, and withstand voltage in organic electrolytes was examined for EDLC. The results of cyclic voltammetry (CV) and chronoamperometry (CA) experiments showed that the electrochemical stability improves when Al foil has higher purity, lower capacitance, and higher withstand voltage. To improve the electrochemical stability of EDLC current collectors made of low-purity foil (99.4% Al foil), the foil was modified by chemical etching to reduce its capacitance to $60{\mu}F/cm^2$ and forming to have withstand a voltage of 3 Vf. EDLC cells using the modified Al foil as a current collector were made to 2.7 V with 360 F, and a constant voltage load test was subsequently performed for 2500 hours at high temperature under a rated voltage of 2.7 V. The reliability and stability of the EDLC cell improved when the modified Al foil was used as a current collector. To understand the deterioration process of the Al current collector, standard cells made of conventional Al foil under a constant voltage load test were disassembled, and the surface changes of the foil were measured every 500 hours. The Al foil became increasingly corroded, causing the adhesion between the AC coating layer and the Al foil to weaken, and it was confirmed that partial AC coating layer peeling occurred.
Keywords
EDLC; Current collector; Corrosion; Degradation; Aluminum;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. R. Strohmeier, Appl. Surf. Sci., 1989, 40(3), 249-263.   DOI
2 A. Mozalev, A. Poznyak, I. Mozaleva, A. W. Hassel, Electrochem. Commun., 2001, 3(6), 299-305.   DOI
3 S. T. Myung, Y. Hitoshi, Y. K. Sun, J. Mater. Chem., 2011, 21(27), 9891-9911.   DOI
4 C. Hu, W. Qu, R. Rajagopalan, C. Randall, J. Power Sources, 2014, 272, 90-99.   DOI
5 N. F. Jackson, Electrocompon. Sci. Technol., 1975, 2(1), 33-44.   DOI
6 M. Abdallah, Corros. Sci., 2004, 46(8), 1981-1996.   DOI
7 R. Xiao, K. Yan, J. Yan, J. Wang, Corros. Sci., 2008, 50(6), 1576-1583.   DOI
8 J. K. Kim, E. O. Kim, U. J. Lee, I. B. Lee, S. H. Han, H. B. Son, S. H. Yoon, Electrochim. Acta, 2016, 219, 447-452.   DOI
9 G. D. Davis, W. C. Moshier, G. G. Long, D. R. Black, J. Electrochem. Soc., 1991, 138(11), 3194-3199.   DOI
10 J. R. Davis, ASM specialty handbook: Aluminum and aluminum alloys, ASM International, 1993.
11 F. Li, L. Zhang, R. M. Metzger, Chem. Mater., 1998, 10(9), 2470-2480.   DOI
12 J. R. Davis JR, Corrosion of aluminum and aluminum alloys, ASM International, 1999.
13 M. Morita, T. Shibata, N. Yoshimoto, M. Ishikawa, Electrochim. Acta, 2002, 47(17), 2787-2793.   DOI
14 G. O. Avwiri, F. O. Igho, Mater. Lett., 2003, 57(22), 3705-3711.   DOI
15 M. Stern, A. L. Geary, J. Electrochem. Soc., 1957, 104(1), 56-63.   DOI
16 Z. Szklarska-Smialowska, Corros. Sci., 1999, 41(9), 1743-1767.   DOI
17 T. P. Hoar, D. C. Mears, G. P. Rothwell, Corros. Sci., 1965, 5(4), 279-289.   DOI
18 N. Sato, J. Electrochem. Soc., 1982, 129(2), 255-260.   DOI
19 H. Masuda, M. Yotsuya, M. Asano, K. Nishio, M. Nakao, A. Yokoo, T. Tamamura, App. Phys. Lett., 2001, 78(6), 826-828.   DOI
20 R. Kotz, P. Ruch, D. Cericola, J. Power Sources, 2010, 195(3), 923-928.   DOI
21 M. Hahn, A. Würsig, R. Gallay, P. Novak, R. Kotz, Electrochem. Commun., 2005, 7(9), 925-930.   DOI
22 M. Hahn, R. Kötz, R. Gallay, A. Siggel, Electrochim. Acta., 2006, 52(4), 1709-1712.   DOI
23 R. Kotz, M. Hahn, P. Ruch, R. Gallay, Electrochem. Commun., 2008, 10(3), 359-362.   DOI
24 S. Ishimoto, Y. Asakawa, M. Shinya, K. Naoi, J. Electrochem. Soc., 2009, 156(7), A563-A571.   DOI
25 K. Kanamura, T. Umegaki, S. Shiraishi, M. Ohashi, Z. I. Takehara, J. Electrochem. Soc., 2002, 149(2), A185-A194.   DOI
26 M. Morita, T. Shibata, N. Yoshimoto, M. Ishikawa, Electrochim. Acta, 2002, 47(17), 2787-2793.   DOI
27 M. Morita, T. Shibata, N. Yoshimoto, M. Ishikawa, J. Power Sources., 2003, 119, 784-788.
28 S. Song, T. J. Richardson, G. V. Zhuang, T. M. Devine, J. W. Evans, Electrochim. Acta, 2004, 49(9), 1483-1490.   DOI
29 A. H. Whitehead, M. J. Schreiber, J. Electrochem. Soc., 2005, 152(11), A2105-A2113.   DOI
30 S. S. Zhang, J. Power Sources, 2006, 162(2), 1379-1394.   DOI
31 C. Peng, L. Yang, Z. Zhang, K. Tachibana, Y. Yang, J. Power Sources, 2007, 173(1), 510-517.   DOI
32 M. Nadherna, R. Dominko, D. Hanzel, J. Reiter, M. Gaberscek, J. Electrochem. Soc., 2009, 156(7), A619-A626.   DOI
33 B. Markovsky, F. Amalraj, H. E. Gottlieb, Y. Gofer, S. K. Martha, D. Aurbach, J. Electrochem. Soc., 2010, 157(4), A423-A429.   DOI
34 A. M. Bittner, M. Zhu, Y. Yang, H. F. Waibel, M. Konuma, U. Starke, C. J. Weber, J. Power Sources, 2012, 203, 262-273.   DOI
35 R.S. Kühnel, A. Balducci, J. Power Sources, 2014, 249, 163-171.   DOI
36 P. Azais, L. Duclaux, P. Florian, D. Massiot, M. A. Lillo- Rodenas, A. Linares-Solano, J. P. Peres, C. Jehoulet, F. Beguin, J. Power Sources, 2007, 171(2), 1046-1053.   DOI
37 P. Kurzweil, M. Chwistek, J. Power Sources, 2008, 176(2), 555-567.   DOI
38 F. Beguin, E. Frackowiak, Supercapacitors: Materials, Systems, and Applications, Wiley-VCH, 2013.
39 P. Alotto, M. Guarnieri, F. Moro, Renew. Sustain. Energy Rev., 2014, 29, 325-335.   DOI
40 O. Hanna, S. Luski, D. Aurbach, J. Electrochem. Soc., 2017, 164(2), A231-A236.   DOI
41 X. Z. Sun, X. Zhang, H. T. Zhang, B. Huang, Y. W. Ma, J. Solid State Electrochem., 2013, 17(7), 2035-2042.   DOI
42 D. Liu, Z. Jia, D. Wang, Carbon, 2016, 100, 664-677.   DOI
43 N. Blomquist, T. Wells, B. Andres, J. Bäckström, S. Forsberg, H. Olin, Scientific Rep., 2017, 7, 39836-39842.   DOI
44 K. Naoi, P. Simon, J. Electrochem. Soc., 2008, 17(1), 34-37.
45 P. Simon, Y. Gogotsi, Nature Materials, 2008, 7(11), 845-854.   DOI
46 K. Chiba, T. Ueda, Y. Yamaguchi, Y. Oki, F. Shimodate, K. Naoi, J. Electrochem. Soc., 2011, 158(8), A872-A882.   DOI
47 C. Iwakura, Y. Fukumoto, H. Inoue, S. Ohashi, S. Kobayashi, S. H. Tada, M. Abe, J. Power Sources, 1997, 68(2), 301-303.   DOI
48 H. Yang, K. Kwon, T. M. Devine, J. W. Evans, J. Electrochem. Soc., 2000, 147(12), 4399-4407.   DOI
49 L. J. Krause, W. Lamanna, J. Summerfield, M. Engle, G. Korba, R. Loch, R. Atanasoski, J. Power Sources, 1997, 68(2), 320-325.   DOI
50 J. W. Braithwaite, A. Gonzales, G. Nagasubramanian, S. J. Lucero, D. E. Peebles, J. A. Ohihausen, W. R. Cieslak, J. Electrochem. Soc., 1999, 146(2), 448-456.   DOI
51 X. Wang, E. Yasukawa, S. Mori, Electrochim. Acta, 2000, 45(17), 2677-2684.   DOI
52 S. S. Zhang, T. R. Jow, J. Power Sources, 2002, 109(2), 458-464.   DOI
53 B.E. Conway, V. Birss, J. Wojtowicz, J. Power Sources, 1997, 66(1-2), 1-14.   DOI
54 R. Kotz, M. Carlen, Electrochim. Acta, 2000, 45(15), 2483-2498.   DOI
55 L. L. Zhang, Y. Gu, X. S. Zhao, J. Mater. Chem. A, 2013, 1(33), 9395-9408.   DOI
56 K. Naoi, S. Ishimoto, J. Miyamoto, W. Naoi, Energy Environ. Sci., 2012, 5(11), 9363-9373.   DOI
57 C. W. Liew, S. Ramesh, A. K. Arof, Energy, 2016, 109, 546-556.   DOI
58 J. R. Miller, P. Simon, Electrochem. Soc. Interface, 2008, 17(1), 31-32.
59 J. R. Miller, P. Simon, Science, 2008, 321(5889), 651-652.   DOI
60 A. Burke, J. Power Sources, 2000, 91(1), 37-50.   DOI
61 A. Burke, Electrochim, Acta, 2007, 53(3), 1083-1091.   DOI