• Title/Summary/Keyword: Liquid-phase synthesis

Search Result 202, Processing Time 0.023 seconds

On the Properties and Synthesis of Nanostructured W-Cu alloys by Mechanical Alloying(II) Sintering Behavior of MA NS W-Cu Composite Powders (기계적 합금화 방법으로 제조된 nanostructured W-Cu 합금의 제조 및 물성 연구(II) -MA NS W-Cu 복합분말의 소결거동-)

  • 김진천
    • Journal of Powder Materials
    • /
    • v.5 no.2
    • /
    • pp.89-97
    • /
    • 1998
  • Sintering behavior of nanostructured(NS) W-Cu powders prepared by mechanical alloying (MA) was investigated as a function of sintering temperature. MA NS W-2owt%Cu and W-3owt%Cu composite powders with the crystal size of 20-30 nm were annealed at 90$0^{\circ}C$, and thermal characteristics of those powders were investigated by DSC. Sintering behavior of MA NS W-Cu composite powders was investigated during the solid-state sintering and the Cu-liquid phase sintering. The new nanosintering phenonenon of MA W-Cu powders at solid-state sintering temperature was suggested to explain the W-grain growth in the inside of MA powders. The sintering densification of MA NS W-Cu powders was enhanced at Cu melting temperature by arrangement of MA powders, i.e., the first rearrangement of MA powders was occurred, and then the rearrangement of W-grains in the sintered parts was also took place during liquid-phase sintering, i.e., the second rearrangement was happened. Due to the double rearrangement process of MA NS W-Cu powders, the high sintered density with more than 96%o was obtained and the fine and high homogeneous state of W and Cu phases was achieved by sintering at 1200 $^{\circ}C$.

  • PDF

Synthesis, Characterization and Liquid Phase Oxidation of Cyclohexane with Hydrogen Peroxide over Oxovanadium(IV) Schiff-base Tetradendate Complex Covalently Anchored to Multi-Wall Carbon Nanotubes (MWNTs)

  • Salavati-Niasari, Masoud;Bazarganipour, Mehdi
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.355-362
    • /
    • 2009
  • The chemical modification of multi-wall carbon nanotubes (MWNTs) is an emerging area in material science. In the present study, hydroxyl functionalized oxovanadium(IV) Schiff-base; N,N'-bis(4-hydroxysalicylidene)-ethylene-1, 2-diamineoxovanadium(IV), [VO($(OH)_2$-salen)]; has been covalently anchored on modified MWNTs. The new modified MWNTs ([VO($(OH)_2$-salen)]-MWNTs]) have been characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron (XPS), UV-Vis, Diffuse reflectance (DRS), FT-IR spectroscopy and elemental analysis. The analytical data indicated a composition corresponding to the mononuclear complex of tetradentate Schiff-base ligand. The characterization of the data showed the absence of extraneous complex, retention of MWNTs and covalently anchored on modified MWNTs. Liquid-phase oxidation of cyclohexane with $H_2O_2$ to a mixture of cyclohexanone, cyclohexanol and cyclohexane-1,2-diol in $CH_3$CN have been reported using oxovanadium(IV) Schiff-base complex covalently anchored on modified MWNTs as catalysts. This catalyst is more selective toward cyclohexanol formation.

Synthesis of Platinum Nanoparticles by Liquid Phase Reduction (액상환원공정을 이용한 백금 나노 입자의 합성)

  • Lee, Jin-Ho;Kim, Se-Hoon;Kim, Jin-Woo;Lee, Min-Ha;Kim, Young-Do
    • Journal of Powder Materials
    • /
    • v.19 no.1
    • /
    • pp.60-66
    • /
    • 2012
  • In this study, Platinum(Pt) nanoparticles were synthesized by using polyol process which is one of the liquid phase reduction methods. Dihydrogen hexachloroplatinate (IV) hexahydrate $(H_2PtCl_6{\cdot}6H_2O)$, as a precursor, was dissolved in ethylene glycol and silver nitrate ($AgNO_3$) was added as metal salt for shape control of Pt particle. Also, polyvinylpyrrolidone (PVP), as capping agent, was added to reduce the size of particle and to separate the particles. The size of Pt nanoparticles was evaluated particle size analyzer (PSA). The size and morphology of Pt nanoparticles were observed by transmission electron microscopy (TEM) and high resolution TEM (HRTEM). Synthesized Pt nanoparticles were studied with varying time and temperature of polyol process. Pt nanoparticles have been successfully synthesized with controlled sizes in the range 5-10 and 20-40 nm with cube and multiple-cube shapes.

A Study of the Development of CVD Precursors III-Synthesis and Properties of New Lead $\beta$-diketonate Derivatives

  • 임종태;이중철;이완인;이익모
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.3
    • /
    • pp.355-361
    • /
    • 1999
  • To improve the volatility and stability of lead complexes, the principle of stabilization by saturating the metal coordination sphere by intramolecular coordination through a β-diketonates with an ethereal group has was tested. Several new lead complexes with alkoxyalkyl-substituted β-diketonates, Pb(R1C(O)CHC(O)(CH2)3OR2)2(Rl=t-Bu, Me, OMe, i-Pr, R2=Me, Et), or carboxylate, Pb(OC(O)(CH2)3OEt)2, were prepared by the reaction between Pb(OAc)2 and corresponding alkoxyalkyl-substituted β-diketonates, and they were found to have a viscous liquid phase. The nature of the head (β-diketonate or carboxylate) or tails and substituents of β-diketonates appeared not to be important for the formation of the liquid phase. It is worth mentioning that Pb(OAc)2, which has limited use due to its low solubility, was successfully adopted as a starting material for the preparation of new lead complexes. Easy hydrolysis, reaction with HCl, and 13C NMR spectra indicated that tail portions were not coordinated to the metal as a copper derivative, Cu(t-BuC(O)CHC(O)(CH2)3OMe)2. All these complexes were not volatile enough for the MOCVD experiments, but a methyl derivative, Pb(MeC(O)CHC(O)(CH2)3OEt)2, showed some sublimation. The methoxy derivative, Pb(MeOC(O)CHC(O)(CH2)3OEt)2, was thermally unstable due to possible equilibrium between species coordinating with a keto oxygen atom and an ethereal atom of a methoxy group, which was confirmed by IR and 13C NMR spectra.

Solution-Processed Two-Dimensional Materials for Scalable Production of Photodetector Arrays

  • Rhee, Dongjoon;Kim, Jihyun;Kang, Joohoon
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.228-237
    • /
    • 2022
  • Two-dimensional (2D) nanomaterials have demonstrated the potential to replace silicon and compound semiconductors that are conventionally used in photodetectors. These materials are ultrathin and have superior electrical and optoelectronic properties as well as mechanical flexibility. Consequently, they are particularly advantageous for fabricating high-performance photodetectors that can be used for wearable device applications and Internet of Things technology. Although prototype photodetectors based on single microflakes of 2D materials have demonstrated excellent photoresponsivity across the entire optical spectrum, their practical applications are limited due to the difficulties in scaling up the synthesis process while maintaining the optoelectronic performance. In this review, we discuss facile methods to mass-produce 2D material-based photodetectors based on the exfoliation of van der Waals crystals into nanosheet dispersions. We first introduce the liquid-phase exfoliation process, which has been widely investigated for the scalable fabrication of photodetectors. Solution processing techniques to assemble 2D nanosheets into thin films and the optoelectronic performance of the fabricated devices are also presented. We conclude by discussing the limitations associated with liquid-phase exfoliation and the recent advances made due to the development of the electrochemical exfoliation process with molecular intercalants.

Characteristics of Spodumene Powders Synthesized by Polyvinyl Alcohol Solution Technique (Polyvinyl Alcohol 폴리머 용액법으로 합성한 스포듀민 분말의 특성연구)

  • Lee, Sang-Jin;Park, Ji-Eun
    • Journal of Powder Materials
    • /
    • v.18 no.1
    • /
    • pp.35-40
    • /
    • 2011
  • LAS-system ceramic powder, spodumene ($Li_2O{\cdot}Al_2O_3{\cdot}4SiO_2$), was successfully synthesized by a chemical solution technique employing PVA(polyvinyl alcohol) as an organic carrier. The PVA content affected the microstructure of porous precursor gels and the crystalline development. The optimum PVA content contributed to homogeneous distribution of metal ions in the precursor gel and it resulted in the synthesis of glass free $\beta$-spodumene powder having a specific surface area of $7.57\;m^2/g$. The agglomerated $\beta$-spodumene powders were also enough soft to grind to fine powders by a simple ball milling process. The microstructures of the densified powder compacts were strongly dependant on the minor phases of spodumene solid solution and amount of liquid phase, which were formed from the inhomogeneous precursors.

Pervaporation Separation of Water/Ethanol Mixtures through PBMA/anionic PAA IPN Membrane

  • Jin, Young-Sub;Kim, Sung-Chul
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.10a
    • /
    • pp.86-87
    • /
    • 1996
  • IPN (Interpenetrating Polymer Network) is a mixture of two or more crosslinked polymers with physically interlocked network structures between the component polymers. IPN can be classified as an alloy of thermosets and has the characteristics of thermosets such as the thermal resistance and chemical resistance and also has the characteristics of polymer alloys with enhanced impact resistance and amphoteric properties. The physical interlocking during the synthesis restricts the phase separation of the component polymer with chemical pinning process, thus the control of morphology is possible through variations of the reaction temperature and pressure, catalyst concentration and crosslinking agent concentration. Finely dispersed domain structure can be obtained through IPN synthesis of polymer components with gross immiscibility. In membrane applications, particularly for the separation of liquid mixtures, crosslinked polymer component with specific affinity to the permeate is needed. With the presence of the permeant-inert polymer component, the mechanical strength and the selectivity of the membranes are enhanced by restricting the swelling of the transporting polymer component networks.

  • PDF

The pH Effect on the Preparation of MFI Type Ferrisilicate Zeolites

  • 염영훈;남상성;김성보;이규완
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.7
    • /
    • pp.781-785
    • /
    • 1999
  • Ferrisilicates with MFI type structure were hydrothermally synthesized. The structural environments of iron in the ferrisilicates were characterized by XRD, SEM, IR, EPR, and ammonia-TPD. It has been shown that pH of the final gel mixture during the synthesis affects the crystal size, morphology, chemical composition and catalyticactivity. The results of the lattice parameters, IR, and EPR indicate the existence of a framework iron and the content of framework iron depends on pH of the synthesis gel. Finally, the catalytic activity of these zeolites was examined for the cyclohexane oxidation to cyclohexanol and cyclohexanone in the liquid phase. The conversion of this reaction was increased with increasing iron content of the framework lattice positions.

A Study on the Synthesis and Property of Azide Type Photosensitive Resin (Azide형 감광성수지의 합성과 특성에 관한 연구)

  • 조가람
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.14 no.1
    • /
    • pp.115-131
    • /
    • 1996
  • The PVT(pressure-volume-temperature) relation of main-chain dimer liquid crystals having structures such as $\alpha$,$\omega$-bis[(4,4`-cyanobiphenyl) oxy] alkane(CBA-n with=9, 10) were studied. these dimer liquid crystals are known to form an enantiotropic nematic mesophase. In this work, we have determined the volume change as a function of temperature and pressure by using a GNOMIX PVT apparatus. In the V-Tcurves obtaind from isobaris mearements on various pressures, volume changes were observed at the nematic-isotropiz and nematic-crystal phase transitions. The volume changes at the transition exhibit slight odd-even effect with respect to the number of methylene unit n. The values of the (S)v obtained at the NI transition for CBA-9 and -10 were 6.9 and 12.6J/mol k. The valuesof (S)v for the CN transition were estimated on the basis of DSC(differential scanning calorimetry) data: 58.8(CBA-9) and 65.3J/mol k (CBA-10). For both transition, it was found that the correction about the volume change is significant, ranging from 40% to 60% of the total transition entropy observed under constant pressure.

  • PDF

Morphology Control of Single Crystalline Rutile TiO2 Nanowires

  • Park, Yi-Seul;Lee, Jin-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3571-3574
    • /
    • 2011
  • Nano-scaled metal oxides have been attractive materials for sensors, photocatalysis, and dye-sensitization for solar cells. We report the controlled synthesis and characterization of single crystalline $TiO_2$ nanowires via a catalyst-assisted vapor-liquid-solid (VLS) and vapor-solid (VS) growth mechanism during TiO powder evaporation. Scanning electron microscope (SEM) and transmission electron microscope (TEM) studies show that as grown $TiO_2$ materials are one-dimensional (1D) nano-structures with a single crystalline rutile phase. Also, energy-dispersive X-ray (EDX) spectroscopy indicates the presence of both Ti and O with a Ti/O atomic ratio of 1 to 2. Various morphologies of single crystalline $TiO_2$ nano-structures are realized by controlling the growth temperature and flow rate of carrier gas. Large amount of reactant evaporated at high temperature and high flow rate is crucial to the morphology change of $TiO_2$ nanowire.