DOI QR코드

DOI QR Code

Synthesis, Characterization and Liquid Phase Oxidation of Cyclohexane with Hydrogen Peroxide over Oxovanadium(IV) Schiff-base Tetradendate Complex Covalently Anchored to Multi-Wall Carbon Nanotubes (MWNTs)

  • Salavati-Niasari, Masoud (Institute of Nano Science and Nano Technology and Department of Chemistry, Faculty of Science, University of Kashan) ;
  • Bazarganipour, Mehdi (Department of Chemistry, Faculty of Science, University of Kashan)
  • Published : 2009.02.20

Abstract

The chemical modification of multi-wall carbon nanotubes (MWNTs) is an emerging area in material science. In the present study, hydroxyl functionalized oxovanadium(IV) Schiff-base; N,N'-bis(4-hydroxysalicylidene)-ethylene-1, 2-diamineoxovanadium(IV), [VO($(OH)_2$-salen)]; has been covalently anchored on modified MWNTs. The new modified MWNTs ([VO($(OH)_2$-salen)]-MWNTs]) have been characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron (XPS), UV-Vis, Diffuse reflectance (DRS), FT-IR spectroscopy and elemental analysis. The analytical data indicated a composition corresponding to the mononuclear complex of tetradentate Schiff-base ligand. The characterization of the data showed the absence of extraneous complex, retention of MWNTs and covalently anchored on modified MWNTs. Liquid-phase oxidation of cyclohexane with $H_2O_2$ to a mixture of cyclohexanone, cyclohexanol and cyclohexane-1,2-diol in $CH_3$CN have been reported using oxovanadium(IV) Schiff-base complex covalently anchored on modified MWNTs as catalysts. This catalyst is more selective toward cyclohexanol formation.

Keywords

References

  1. Iijima, S. Nature 1991, 354, 56 https://doi.org/10.1038/354056a0
  2. Dresselhaus, M. S.; Dresselhaus, G.; Saito, R. Carbon 1995, 33, 883 https://doi.org/10.1016/0008-6223(95)00017-8
  3. Treacy, M. M.; Ebbesen, T. W.; Gibson, J. M. Nature 1996, 381, 678 https://doi.org/10.1038/381678a0
  4. Wong, E. W.; Sheehan, P. E.; Lieber, C. M. Science 1997, 277, 1971 https://doi.org/10.1126/science.277.5334.1971
  5. Falvo, M. R.; Clary, G. J.; Taylor II, R. M.; Chi, V.; Brooks Jr., F. P.; Washburn, S.; Superfine, R. Nature 1997, 389, 582 https://doi.org/10.1038/39282
  6. de Heer, W. A.; Chatelain, A.; Ugarte, D. Science 1995, 270, 1179 https://doi.org/10.1126/science.270.5239.1179
  7. Dai, H.; Wong, E. W.; Lieber, C. M. Science 1996, 272, 523 https://doi.org/10.1126/science.272.5261.523
  8. Nakamura, T.; Ohana, T.; Ishihara, M.; Hasegawa, M.; Koga, Y. Diamond and Related Materials 2007, 16, 1091 https://doi.org/10.1016/j.diamond.2006.12.020
  9. Showkat, A. M.; Lee, K.-P.; Gopalan, A. I.; Choic, S.-H.; Nho, Y. C. Diamond and Related Materials 2007, 16, 1688 https://doi.org/10.1016/j.diamond.2007.01.025
  10. Kokai, D. F.; Koshio, A.; Shiraishi, M.; Matsuta, T.; Shimoda, S.; Ishihara, M.; Koga, Y.; Deno, H.; Diamond and Related Materials 2005, 14, 724 https://doi.org/10.1016/j.diamond.2004.12.015
  11. Ebbesen, T. W.; Lezec, H. J.; Hiura, H.; Bennett, J. W.; Ghaemi, H. F.; Thio, T. Nature 1996, 382, 54 https://doi.org/10.1038/382054a0
  12. Wildoer, J. W.; Venema, L. C.; Rinzler, A. G.; Smalley, R. E.; Dekker, C. Nature 1998, 391, 59 https://doi.org/10.1038/34139
  13. Li, Y. B.; Wei, B. Q.; Liang, J.; Yu, Q.; Wu, D. H. Carbon 1999, 37, 493 https://doi.org/10.1016/S0008-6223(98)00218-8
  14. Kim, Y. A.; Hayashi, T.; Fukai, Y.; Endo, M.; Yanahisawa, T.; Dresselhaus, M. S. Chem. Phys. Lett. 2002, 355, 279 https://doi.org/10.1016/S0009-2614(02)00248-8
  15. Shelimov, K. B.; Esenaliev, R. O.; Rinzler, A. G.; Huffman, C. B.; Smalley, R. E. Chem. Phys. Lett. 1998, 282, 429 https://doi.org/10.1016/S0009-2614(97)01265-7
  16. Hilding, J.; Grulke, E. A.; Zhang, Z. G.; Lockwood, F. J. Dispersion Sci. Technol. 2003, 24, 1 https://doi.org/10.1081/DIS-120017941
  17. Riggs, J. E.; Walker, D. B.; Carroll, D. L.; Sun, Y. P. J. Phys. Chem. B 2000, 104, 7071 https://doi.org/10.1021/jp0011591
  18. Matarredona, O.; Rhoads, H.; Li, Z.; Harwell, J.; Balzano, L.; Resasco, D. J. Phys. Chem. B 2003, 107, 13357 https://doi.org/10.1021/jp0365099
  19. Chiu, P. W.; Duesberg, G. S.; Dettlaff-Weglikowska, U.; Roth, S. Appl. Phys. Lett. 2002, 80, 3811 https://doi.org/10.1063/1.1480487
  20. Chen, J.; Hamon, M. A.; Hu, H.; Chen, Y.; Rao, A. M.; Eklund, P. C.; Haddon, R. C. Science 1998, 282, 95 https://doi.org/10.1126/science.282.5386.95
  21. Mickelson, E. T.; Chiang, I. W.; Zimmerman, J. L.; Boul, P. J.; Lozano, J.; Liu, J.; Smalley, R. E.; Hauge, R. H.; Margrave, J. L. J. Phys. Chem. B 1999, 103, 4318 https://doi.org/10.1021/jp9845524
  22. Lau, K. T.; Hui, D. Carbon 2002, 40, 1605 https://doi.org/10.1016/S0008-6223(02)00157-4
  23. Garg, A.; Sinnott, S. B. Chem. Phys. Lett. 1998, 295, 273 https://doi.org/10.1016/S0009-2614(98)00969-5
  24. Bahr, J. L.; Yang, J.; Kosynkin, D. M.; Bronikowski, M. J.; Smalley, R. E.; Tour, J. M. J. Am. Chem. Soc. 2001, 123, 6536 https://doi.org/10.1021/ja010462s
  25. Pompeo, F.; Reasaco, D. Nano Lett. 2002, 2, 369 https://doi.org/10.1021/nl015680y
  26. Dyke, C. A.; Tour, J. M. Nano Lett. 2003, 3, 1215 https://doi.org/10.1021/nl034537x
  27. Strano, M. S.; Dyke, C. A.; Usrey, M. L.; Barone, P. W.; Allen, M. J.; Shan, H.; Kittrell, C.; Hauge, R. H.; Tour, J. M.; Smalley, R. E. Science 2003, 301, 1519 https://doi.org/10.1126/science.1087691
  28. Chen, J.; Rao, A. M.; Lyuksyutov, S.; Itkis, M. E.; Hamon, M. A.; Hu, H.; Cohn, R. W.; Eklund, P. C.; Colbert, D. T.; Smalley, R. E.; Haddon, R. C. J. Phys. Chem. B 2001, 105, 252
  29. O'Connell, M. C.; Boul, P.; Ericson, L. M.; Huffman, C.; Wang, Y.; Haroz, E.; Kuper, C.; Tour, J.; Ausman, K. D.; Smalley, R. E. Chem. Phys. Lett. 2001, 342, 265 https://doi.org/10.1016/S0009-2614(01)00490-0
  30. Chattopadhyay, D.; Lastella, S.; Kim, S.; Papadimitrikapoulos, F. J. Am. Chem. Soc. 2002, 124, 728 https://doi.org/10.1021/ja0172159
  31. Chattopadhyay, D.; Galeska, I.; Papadimitrikapoulos, F. J. Am. Chem. Soc. 2003, 125, 3370 https://doi.org/10.1021/ja028599l
  32. O'Connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Moore, V. C.; Strano, M. S.; Haroz, E. H.; Rialon, K. L.; Boul, P. J.; Noon, W. H.; Kittrell, C.; Ma, J. P.; Hauge, R. H.; Weisman, R. B.; Smalley, R. E. Science 2002, 297, 593 https://doi.org/10.1126/science.1072631
  33. Islam, M. F.; Rojas, E.; Bergey, D. M.; Johnson, A. T.; Yodh, A. G. Nano Lett. 2003, 3, 269 https://doi.org/10.1021/nl025924u
  34. Kang, Y. J.; Taton, T. A. J. Am. Chem. Soc. 2003, 125, 5650 https://doi.org/10.1021/ja034082d
  35. Star, A.; Stoddart, J. F. Macromolecules 2002, 35, 7516 https://doi.org/10.1021/ma0204150
  36. Star, A.; Stoddart, J. F.; Steuerman, D.; Diehl, M.; Boukai, A.; Wong, E. W.; Yang, X.; Chung, S. W.; Choi, H.; Heath, J. R Angew. Chem., Int. Ed. 2001, 40, 1721 https://doi.org/10.1002/1521-3773(20010504)40:9<1721::AID-ANIE17210>3.0.CO;2-F
  37. Ballhausen, C. J.; Gray, H. B. Molecular Orbital Theory; Benjamin: New York, 1965
  38. Baleizão, C.; Gigante, B.; Garcia, H.; Corma, A. J. Catal. 2004, 221, 77 https://doi.org/10.1016/j.jcat.2003.08.016
  39. Salavati-Niasari, M.; Elzami, M. R.; Mansournia, M. R.; Hydarzadeh, S. J. Mol. Catal. A: Chem. 2004, 221, 169 https://doi.org/10.1016/j.molcata.2004.07.007
  40. Lever, A. B. P. Crystal Field Spectra. Inorganic Electronic Spectroscopy, 1st ed.; Elsevier: Amsterdam, 1968; p 249
  41. Cui, J.; Wang, W. P.; You, Y. Z.; Liu, C.; Wang, P. Polymer 2004, 45, 8717 https://doi.org/10.1016/j.polymer.2004.10.068
  42. Salavati-Niasari, M.; Sobhani, A. J. Mol. Catal. A: Chem. 2008, 285, 58 https://doi.org/10.1016/j.molcata.2008.01.030
  43. Salavati-Niasari, M. Microporous Mesoporous Mater. 2006, 92, 173 https://doi.org/10.1016/j.micromeso.2006.01.005
  44. Salavati-Niasari, M.; bazarganipour, M. J. Mol. Catal. A: Chem. 2007, 278, 17

Cited by

  1. Liquid Phase Solvent-Less Cyclohexane Oxidation Catalyzed by Covalently Anchored Transition-Metal Schiff Base Complex on α-Titanium Phosphate vol.146, pp.2, 2016, https://doi.org/10.1007/s10562-015-1647-8
  2. α-Zirconium phosphate supported metal–salen complex: synthesis, characterization and catalytic activity for cyclohexane oxidation vol.24, pp.4, 2017, https://doi.org/10.1007/s10934-016-0325-6
  3. Synthesis, characterization and catalytic oxidation of para-xylene by a manganese(III) Schiff base complex on functionalized multi-wall carbon nanotubes (MWNTs) vol.39, pp.31, 2009, https://doi.org/10.1039/b923416k
  4. Coordination and organometallic compounds in the functionalization of carbon nanotubes vol.67, pp.23, 2009, https://doi.org/10.1080/00958972.2014.888063
  5. Oxido- and Dioxido-Vanadium(V) Complexes Supported on Carbon Materials: Reusable Catalysts for the Oxidation of Cyclohexane vol.11, pp.6, 2021, https://doi.org/10.3390/nano11061456