DOI QR코드

DOI QR Code

Characteristics of Spodumene Powders Synthesized by Polyvinyl Alcohol Solution Technique

Polyvinyl Alcohol 폴리머 용액법으로 합성한 스포듀민 분말의 특성연구

  • Lee, Sang-Jin (Department of Advanced Materials Science & Engineering, Mokpo National University) ;
  • Park, Ji-Eun (Department of Advanced Materials Science & Engineering, Mokpo National University)
  • 이상진 (국립목포대학교 신소재공학과) ;
  • 박지은 (국립목포대학교 신소재공학과)
  • Received : 2010.12.31
  • Accepted : 2011.02.08
  • Published : 2011.02.28

Abstract

LAS-system ceramic powder, spodumene ($Li_2O{\cdot}Al_2O_3{\cdot}4SiO_2$), was successfully synthesized by a chemical solution technique employing PVA(polyvinyl alcohol) as an organic carrier. The PVA content affected the microstructure of porous precursor gels and the crystalline development. The optimum PVA content contributed to homogeneous distribution of metal ions in the precursor gel and it resulted in the synthesis of glass free $\beta$-spodumene powder having a specific surface area of $7.57\;m^2/g$. The agglomerated $\beta$-spodumene powders were also enough soft to grind to fine powders by a simple ball milling process. The microstructures of the densified powder compacts were strongly dependant on the minor phases of spodumene solid solution and amount of liquid phase, which were formed from the inhomogeneous precursors.

Keywords

References

  1. M. H. Lin and M. C. Wang: J. Mater. Sci., 30 (1995) 2716. https://doi.org/10.1007/BF00362157
  2. B. Karmakar, P. Kundu, S. Jana and R. N. Dwivedi: J. Am. Ceram. Soc., 85 (2002) 2572. https://doi.org/10.1111/j.1151-2916.2002.tb00498.x
  3. J. K. Kim, S. Y. Yang and C. J. Jung: J. Kor. Ceram. Soc., 28 (1991) 730.
  4. W. Ostertag, G. R. Fischer and J. P. William: J. Am. Ceram. Soc., 51 (1968) 651. https://doi.org/10.1111/j.1151-2916.1968.tb12638.x
  5. M. Haigh and D. J. McCracken: Glass, Dec. (1997) 463.
  6. L. Xia, G. Wen, L. Song and X. Wang: J. Sol-Gel Sci. Technol., 52 (2009) 134. https://doi.org/10.1007/s10971-009-2001-7
  7. H. Suzuki, K. Ota and H. Saito: J. Ceram. Soc. Jpn., 95 (1987) 163.
  8. M. K. Naskar and M. Chatterjee: Mater. Lett., 59 (2005) 998. https://doi.org/10.1016/j.matlet.2004.06.075
  9. S. J. Lee and W. M. Kriven: J. Am. Ceram. Soc., 81 (1998) 2605.
  10. M. A. Gulgun, M. H. Nguyen and W. M. Kriven: J. Am. Ceram. Soc., 82 (1999) 556.
  11. S. J. Lee and C. H. Lee: J. Kor. Ceram. Soc., 39 (2002) 336. https://doi.org/10.4191/KCERS.2002.39.4.336
  12. M. Pechini: U.S. Pat., No., 3 330 697, 1967.
  13. L. W. Tai, H. U. Anderson and P. A. Lessing: J. Am. Ceram. Soc., 75 (1992) 3490. https://doi.org/10.1111/j.1151-2916.1992.tb04458.x
  14. M. H. Nguyen, S. J. Lee and W. M. Kriven: J. Mater. Res., 14 (1999) 3417. https://doi.org/10.1557/JMR.1999.0462
  15. S. J. Lee and K. S. Kim: J. Ceram. Proc. Res., 3 (2002) 136.
  16. S. J. Lee and W. M. Kriven: J. Am. Ceram. Soc., 81 (1998) 2605.
  17. S. J. Lee, S. Y. Chun, C. H. Lee and Y. S. Yoon: J. Nanosci. Nanotechno., 6 (2006) 3633. https://doi.org/10.1166/jnn.2006.071
  18. S. J. Lee, E. A. Benson and W. M. Kriven: J. Am. Ceram. Soc., 82 (1999) 2049.
  19. D. Mazza, M. L. Borlera, G. Busca and A. Delmastro: J. Eur. Ceram. Soc., 11 (1993) 299. https://doi.org/10.1016/0955-2219(93)90029-Q
  20. R. Roy and E. F. Osborn: J. Am. Chem. Soc., 71 (1949) 2092.