DOI QR코드

DOI QR Code

Solution-Processed Two-Dimensional Materials for Scalable Production of Photodetector Arrays

  • Rhee, Dongjoon (School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU)) ;
  • Kim, Jihyun (School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU)) ;
  • Kang, Joohoon (School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU))
  • Received : 2022.06.30
  • Accepted : 2022.07.27
  • Published : 2022.07.31

Abstract

Two-dimensional (2D) nanomaterials have demonstrated the potential to replace silicon and compound semiconductors that are conventionally used in photodetectors. These materials are ultrathin and have superior electrical and optoelectronic properties as well as mechanical flexibility. Consequently, they are particularly advantageous for fabricating high-performance photodetectors that can be used for wearable device applications and Internet of Things technology. Although prototype photodetectors based on single microflakes of 2D materials have demonstrated excellent photoresponsivity across the entire optical spectrum, their practical applications are limited due to the difficulties in scaling up the synthesis process while maintaining the optoelectronic performance. In this review, we discuss facile methods to mass-produce 2D material-based photodetectors based on the exfoliation of van der Waals crystals into nanosheet dispersions. We first introduce the liquid-phase exfoliation process, which has been widely investigated for the scalable fabrication of photodetectors. Solution processing techniques to assemble 2D nanosheets into thin films and the optoelectronic performance of the fabricated devices are also presented. We conclude by discussing the limitations associated with liquid-phase exfoliation and the recent advances made due to the development of the electrochemical exfoliation process with molecular intercalants.

Keywords

Acknowledgement

This study was supported by the National Research Foundation of Korea (NRF) funded by the Korean Government (MSIT; grant no. 2020R1C1C1009381) and the Korea Basic Science Institute (KBSI) National Research Facilities and Equipment Center (NFEC) grant funded by the Korean Government (Ministry of Education) (2019R1A6C1010031).

References

  1. J. Liu, S. Cristoloveanu, and J. Wan, "A Review on the Recent Progress of Silicon-on-Insulator-Based Photodetectors", Phys. Status Solidi A, Vol. 218, No. 14, p. 2000751, 2021. https://doi.org/10.1002/pssa.202000751
  2. W. Feng, J. B. Wu, X. Li, W. Zheng, X. Zhou, K. Xiao, W. Cao, B. Yang, J. C. Idrobo, L. Basile, W. Tian, P. Tan, and P. Hu, "Ultrahigh Photo-Responsivity and Detectivity in Multilayer InSe Nanosheets Phototransistors with Broadband Response", J. Mater. Chem. C, Vol. 3, No. 27, pp. 7022-7028, 2015. https://doi.org/10.1039/C5TC01208B
  3. N. Huo and G. Konstantatos, "Recent Progress and Future Prospects of 2D-Based Photodetectors", Adv. Mater., Vol. 30, No. 51, p. 1801164, 2018. https://doi.org/10.1002/adma.201801164
  4. J. Jang, P. Choi, H. K. Lyu, and J. K. Shin, "Photocurrent Characteristics of Gate/Body-Tied MOSFET-Type Photodetector with High Sensitivity", J. Sens. Sci. Technol., Vol. 31, No. 3, pp. 1-5, 2022. https://doi.org/10.46670/JSST.2022.31.1.1
  5. H. B. Lee and S. H. Hahm, "A highly integrable p-GaN MSM photodetector with GaN n-channel MISFET for UV image sensor system", J. Sens. Sci. Technol., Vol. 17, No. 5, pp. 346-349, 2008. https://doi.org/10.5369/JSST.2008.17.5.346
  6. C. J. Lee and H. Park, "Surface Passivation Method for GaN UV Photodetectors Using Oxygen Annealing Treatment", J. Sens. Sci. Technol., Vol. 25, No. 4, pp. 252-256, 2016. https://doi.org/10.5369/JSST.2016.25.4.252
  7. J. Y. Cho, J. S. Kim, S. H. Son, J. H. Lee, and S. Y. Choi, "Fabrication and Characteristics of Infrared Photodiode Using Insb Wafer with p-i-n Structure", J. Sens. Sci. Technol., Vol. 8, No. 3, pp. 239-246, 1999.
  8. C. Xie, C. Mak, X. Tao, and F. Yan, "Photodetectors Based on Two-Dimensional Layered Materials Beyond Graphene", Adv. Funct. Mater., Vol. 27, No. 19, p. 1603886, 2017. https://doi.org/10.1002/adfm.201603886
  9. Q. Qiu and Z. Huang, "Photodetectors of 2D Materials from Ultraviolet to Terahertz Waves", Adv. Mater., Vol. 33, No. 15, p. 2008126, 2021. https://doi.org/10.1002/adma.202008126
  10. T. Tan, X. Jiang, C. Wang, B. Yao, and H. Zhang, "2D Material Optoelectronics for Information Functional Device Applications: Status and Challenges", Adv. Sci., Vol. 7, No. 11, p. 2000058, 2020. https://doi.org/10.1002/advs.202000058
  11. F. Xia, T. Mueller, Y.-m. Lin, A. Valdes-Garcia, and P. Avouris, "Ultrafast Graphene Photodetector", Nat. Nanotechnol., Vol. 4, No. 12, pp. 839-843, 2009. https://doi.org/10.1038/nnano.2009.292
  12. T. Mueller, F. Xia, and P. Avouris, "Graphene Photodetectors for High-Speed Optical Communications", Nat. Photonics, Vol. 4, No. 5, pp. 297-301, 2010. https://doi.org/10.1038/nphoton.2010.40
  13. G. Wang, Y. Zhang, C. You, B. Liu, Y. Yang, H. Li, A. Cui, D. Liu, and H. Yan, "Two Dimensional Materials Based Photodetectors", Infrared Phys. Technol., Vol. 88, No. pp. 149-173, 2018. https://doi.org/10.1016/j.infrared.2017.11.009
  14. Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, "Single-Layer MoS2 Phototransistors", ACS Nano, Vol. 6, No. 1, pp. 74-80, 2012. https://doi.org/10.1021/nn2024557
  15. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, "Ultrasensitive Photodetectors Based on Monolayer MoS2", Nat. Nanotechnol., Vol. 8, No. 7, pp. 497-501, 2013. https://doi.org/10.1038/nnano.2013.100
  16. Q. Guo, A. Pospischil, M. Bhuiyan, H. Jiang, H. Tian, D. Farmer, B. Deng, C. Li, S. J. Han, H. Wang, Q. Xia, T. P. Ma, T. Mueller, and F. Xia, "Black Phosphorus Mid-Infrared Photodetectors with High Gain", Nano Lett., Vol. 16, No. 7, pp. 4648-4655, 2016. https://doi.org/10.1021/acs.nanolett.6b01977
  17. M. Huang, M. Wang, C. Chen, Z. Ma, X. Li, J. Han, and Y. Wu, "Broadband Black-Phosphorus Photodetectors with High Responsivity", Adv. Mater., Vol. 28, No. 18, pp. 3481- 3485, 2016. https://doi.org/10.1002/adma.201506352
  18. X. Chen, X. Lu, B. Deng, O. Sinai, Y. Shao, C. Li, S. Yuan, V. Tran, K. Watanabe, T. Taniguchi, D. Naveh, L. Yang, and F. Xia, "Widely Tunable Black Phosphorus Mid-Infrared Photodetector", Nat. Commun., Vol. 8, No. 1, p. 1672, 2017. https://doi.org/10.1038/s41467-017-01978-3
  19. J. Kang, V. K. Sangwan, J. D. Wood, and M. C. Hersam, "Solution-Based Processing of Monodisperse Two-Dimensional Nanomaterials", Acc. Chem. Res., Vol. 50, No. 4, pp. 943-951, 2017. https://doi.org/10.1021/acs.accounts.6b00643
  20. F. Bonaccorso, A. Bartolotta, J. N. Coleman, and C. Backes, "2D-Crystal-Based Functional Inks", Adv. Mater., Vol. 28, No. 29, pp. 6136-6166, 2016. https://doi.org/10.1002/adma.201506410
  21. X. Gao, G. Bian, and J. Zhu, "Electronics from Solution-Processed 2D Semiconductors", J. Mater. Chem. C, Vol. 7, No. 41, pp. 12835-12861, 2019. https://doi.org/10.1039/C9TC03935J
  22. X. Cai, Y. Luo, B. Liu, and H. M. Cheng, "Preparation of 2D Material Dispersions and Their Applications", Chem. Soc. Rev., Vol. 47, No. 16, pp. 6224-6266, 2018. https://doi.org/10.1039/c8cs00254a
  23. F. I. Alzakia and S. C. Tan, "Liquid-Exfoliated 2D Materials for Optoelectronic Applications", Adv. Sci., Vol. 8, No. 11, p. 2003864, 2021. https://doi.org/10.1002/advs.202003864
  24. E. B. Secor, P. L. Prabhumirashi, K. Puntambekar, M. L. Geier, and M. C. Hersam, "Inkjet Printing of High Conductivity, Flexible Graphene Patterns", J. Phys. Chem. Lett., Vol. 4, No. 8, pp. 1347-1351, 2013. https://doi.org/10.1021/jz400644c
  25. J. Li, M. M. Naiini, S. Vaziri, M. C. Lemme, and M. Ostling, "Inkjet Printing of MoS2", Adv. Funct. Mater., Vol. 24, No. 41, pp. 6524-6531, 2014. https://doi.org/10.1002/adfm.201400984
  26. J. W. T. Seo, J. Zhu, V. K. Sangwan, E. B. Secor, S. G. Wallace, and M. C. Hersam, "Fully Inkjet-Printed, Mechanically Flexible MoS2 Nanosheet Photodetectors", ACS Appl. Mater. Interfaces, Vol. 11, No. 6, pp. 5675-5681, 2019. https://doi.org/10.1021/acsami.8b19817
  27. A. G. Kelly, D. O'Suilleabhain, C. Gabbett, and J. N. Coleman, "The Electrical Conductivity of Solution-Processed Nanosheet Networks", Nat. Rev. Mater., Vol. 7, No. 3, pp. 217-234, 2022.
  28. Z. Lin, Y. Liu, U. Halim, M. Ding, Y. Liu, Y. Wang, C. Jia, P. Chen, X. Duan, C. Wang, F. Song, M. Li, C. Wan, Y. Huang, and X. Duan, "Solution-Processable 2D Semiconductors for High-Performance Large-Area Electronics", Nature, Vol. 562, No. 7726, pp. 254-258, 2018. https://doi.org/10.1038/s41586-018-0574-4
  29. P. Zhang, S. Yang, R. Pineda-Gomez, B. Ibarlucea, J. Ma, M. R. Lohe, T. F. Akbar, L. Baraban, G. Cuniberti, and X. Feng, "Electrochemically Exfoliated High-Quality 2H-MoS2 for Multiflake Thin Film Flexible Biosensors", Small, Vol. 15, No. 23, p. 1901265, 2019.
  30. Z. Lin, Y. Huang, and X. Duan, "Van der Waals Thin-Film Electronics", Nat. Electron., Vol. 2, No. 9, pp. 378-388, 2019. https://doi.org/10.1038/s41928-019-0301-7
  31. J. Kim, D. Rhee, O. Song, M. Kim, Y. H. Kwon, D. U. Lim, I. S. Kim, V. Mazanek, L. Valdman, Z. Sofer, J. H. Cho, and J. Kang, "All-Solution-Processed Van der Waals Heterostructures for Wafer-Scale Electronics", Adv. Mater., Vol. 34, No. 12, p. 2106110, 2022. https://doi.org/10.1002/adma.202106110
  32. H. S. Nalwa, "A Review of Molybdenum Disulfide (MoS2) Based Photodetectors: From Ultra-Broadband, Self-Powered to Flexible Devices", RSC Adv., Vol. 10, No. 51, pp. 30529-30602, 2020. https://doi.org/10.1039/d0ra03183f
  33. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films", Science, Vol. 306, No. 5696, pp. 666-669, 2004. https://doi.org/10.1126/science.1102896
  34. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, "Graphene Photonics and Optoelectronics", Nat. Photonics, Vol. 4, No. 9, pp. 611-622, 2010. https://doi.org/10.1038/nphoton.2010.186
  35. L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, "Black Phosphorus Field-Effect Transistors", Nat. Nanotechnol., Vol. 9, No. 5, pp. 372-377, 2014. https://doi.org/10.1038/nnano.2014.35
  36. W. Zheng, R. Lin, Z. Zhang, and F. Huang, "Vacuum-Ultra-violet Photodetection in Few-Layered h-BN", ACS Appl. Mater. Interfaces, Vol. 10, No. 32, pp. 27116-27123, 2018. https://doi.org/10.1021/acsami.8b07189
  37. N. Zhang, Y. Song, K. Zhou, and W. Wang, "Enhanced Performance of Solar-Blind Photodetector of Hexagonal Boron Nitride with Bottom-Contact Electrodes", AIP. Adv., Vol. 10, No. 8, p. 085013, 2020. https://doi.org/10.1063/5.0010182
  38. M. Telkhozhayeva, E. Teblum, R. Konar, O. Girshevitz, I. Perelshtein, H. Aviv, Y. R. Tischler, and G. D. Nessim, "Higher Ultrasonic Frequency Liquid Phase Exfoliation Leads to Larger and Monolayer to Few-Layer Flakes of 2D Layered Materials", Langmuir, Vol. 37, No. 15, pp. 4504- 4514, 2021. https://doi.org/10.1021/acs.langmuir.0c03668
  39. K. R. Paton, E. Varrla, C. Backes, R. J. Smith, U. Khan, A. O'Neill, C. Boland, M. Lotya, O. M. Istrate, P. King, T. Higgins, S. Barwich, P. May, P. Puczkarski, I. Ahmed, M. Moebius, H. Pettersson, E. Long, J. Coelho, S. E. O'Brien, E. K. McGuire, B. M. Sanchez, G. S. Duesberg, N. McEvoy, T. J. Pennycook, C. Downing, A. Crossley, V. Nicolosi, and J. N. Coleman, "Scalable Production of Large Quantities of Defect-Free Few-Layer Graphene by Shear Exfoliation in Liquids", Nat. Mater., Vol. 13, No. 6, pp. 624-630, 2014. https://doi.org/10.1038/nmat3944
  40. W. Zhao, M. Fang, F. Wu, H. Wu, L. Wang, and G. Chen, "Preparation of Graphene by Exfoliation of Graphite Using Wet Ball Milling", J. Mater. Chem., Vol. 20, No. 28, pp. 5817-5819, 2010. https://doi.org/10.1039/c0jm01354d
  41. G. Hu, J. Kang, L. W. T. Ng, X. Zhu, R. C. T. Howe, C. G. Jones, M. C. Hersam, and T. Hasan, "Functional Inks and Printing of Two-Dimensional Materials", Chem. Soc. Rev., Vol. 47, No. 9, pp. 3265-3300, 2018. https://doi.org/10.1039/c8cs00084k
  42. R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O'Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, "Large-Scale Exfoliation of Inorganic Layered Compounds in Aqueous Surfactant Solutions", Adv. Mater., Vol. 23, No. 34, pp. 3944-3948, 2011. https://doi.org/10.1002/adma.201102584
  43. J. Zhu, J. Kang, J. Kang, D. Jariwala, J. D. Wood, J. W. T. Seo, K. S. Chen, T. J. Marks, and M. C. Hersam, "Solution-Processed Dielectrics Based on Thickness-Sorted TwoDimensional Hexagonal Boron Nitride Nanosheets", Nano Lett., Vol. 15, No. 10, pp. 7029-7036, 2015. https://doi.org/10.1021/acs.nanolett.5b03075
  44. L. Xu, A. R. Tetreault, H. H. Khaligh, I. A. Goldthorpe, S. D. Wettig, and M. A. Pope, "Continuous Langmuir- Blodgett Deposition and Transfer by Controlled Edge-toEdge Assembly of Floating 2D Materials", Langmuir, Vol. 35, No. 1, pp. 51-59, 2019. https://doi.org/10.1021/acs.langmuir.8b03173
  45. P. He, J. Cao, H. Ding, C. Liu, J. Neilson, Z. Li, I. A. Kinloch, and B. Derby, "Screen-Printing of a Highly Conductive Graphene Ink for Flexible Printed Electronics", ACS Appl. Mater. Interfaces, Vol. 11, No. 35, pp. 32225- 32234, 2019. https://doi.org/10.1021/acsami.9b04589
  46. A. Chavez-Valdez, M. S. P. Shaffer, and A. R. Boccaccini, "Applications of Graphene Electrophoretic Deposition. A Review", J. Phys. Chem. B, Vol. 117, No. 6, pp. 1502-1515, 2013. https://doi.org/10.1021/jp3064917
  47. S. Veeralingam, L. Durai, P. Yadav, and S. Badhulika, "Record-High Responsivity and Detectivity of a Flexible Deep-Ultraviolet Photodetector Based on Solid State-Assisted Synthesized hBN Nanosheets", ACS Appl. Electron. Mater., Vol. 3, No. 3, pp. 1162-1169, 2021. https://doi.org/10.1021/acsaelm.0c01021
  48. J. Kang, V. K. Sangwan, H.-S. Lee, X. Liu, and M. C. Hersam, "Solution-Processed Layered Gallium Telluride ThinFilm Photodetectors", ACS Photonics, Vol. 5, No. 10, pp. 3996-4002, 2018. https://doi.org/10.1021/acsphotonics.8b01066
  49. N. Curreli, M. Serri, D. Spirito, E. Lago, E. Petroni, B. Martin-Garcia, A. Politano, B. Gurbulak, S. Duman, R. Krahne, V. Pellegrini, and F. Bonaccorso, "Liquid Phase Exfoliated Indium Selenide Based Highly Sensitive Photodetectors", Adv. Funct. Mater., Vol. 30, No. 13, p. 1908427, 2020. https://doi.org/10.1002/adfm.201908427
  50. J. Kang, S. A. Wells, V. K. Sangwan, D. Lam, X. Liu, J. Luxa, Z. Sofer, and M. C. Hersam, "Solution-Based Processing of Optoelectronically Active Indium Selenide", Adv. Mater., Vol. 30, No. 38, p. 1802990, 2018. https://doi.org/10.1002/adma.201802990
  51. S. Sucharitakul, N. J. Goble, U. R. Kumar, R. Sankar, Z. A. Bogorad, F. C. Chou, Y. T. Chen, and X. P. A. Gao, "Intrinsic Electron Mobility Exceeding 103 cm2/(V s) in Multilayer InSe FETs", Nano Lett., Vol. 15, No. 6, pp. 3815-3819, 2015. https://doi.org/10.1021/acs.nanolett.5b00493
  52. J. Kim, S. Kim, Y. S. Cho, M. Choi, S. H. Jung, J. H. Cho, D. Whang, and J. Kang, "Solution-Processed MoS2 Film with Functional Interfaces via Precursor-Assisted Chemical Welding", ACS Appl. Mater. Interfaces, Vol. 13, No. 10, pp. 12221-12229, 2021. https://doi.org/10.1021/acsami.1c00159
  53. Y. S. Cho, D. Rhee, H. J. Kim, H. S. Kim, J. M. Baik, and J. Kang, "Solution-Processed Graphene Thin-Film Enables Binder-Free, Efficient Loading of Nanocatalysts for Electrochemical Water Splitting", Adv. Mater. Interfaces, Vol. 8, No. 23, p. 2101576, 2021. https://doi.org/10.1002/admi.202101576