Browse > Article
http://dx.doi.org/10.46670/JSST.2022.31.4.228

Solution-Processed Two-Dimensional Materials for Scalable Production of Photodetector Arrays  

Rhee, Dongjoon (School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU))
Kim, Jihyun (School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU))
Kang, Joohoon (School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU))
Publication Information
Journal of Sensor Science and Technology / v.31, no.4, 2022 , pp. 228-237 More about this Journal
Abstract
Two-dimensional (2D) nanomaterials have demonstrated the potential to replace silicon and compound semiconductors that are conventionally used in photodetectors. These materials are ultrathin and have superior electrical and optoelectronic properties as well as mechanical flexibility. Consequently, they are particularly advantageous for fabricating high-performance photodetectors that can be used for wearable device applications and Internet of Things technology. Although prototype photodetectors based on single microflakes of 2D materials have demonstrated excellent photoresponsivity across the entire optical spectrum, their practical applications are limited due to the difficulties in scaling up the synthesis process while maintaining the optoelectronic performance. In this review, we discuss facile methods to mass-produce 2D material-based photodetectors based on the exfoliation of van der Waals crystals into nanosheet dispersions. We first introduce the liquid-phase exfoliation process, which has been widely investigated for the scalable fabrication of photodetectors. Solution processing techniques to assemble 2D nanosheets into thin films and the optoelectronic performance of the fabricated devices are also presented. We conclude by discussing the limitations associated with liquid-phase exfoliation and the recent advances made due to the development of the electrochemical exfoliation process with molecular intercalants.
Keywords
Photodetector; Optoelectronics; Two-dimensional materials; Solution processing;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 H. S. Nalwa, "A Review of Molybdenum Disulfide (MoS2) Based Photodetectors: From Ultra-Broadband, Self-Powered to Flexible Devices", RSC Adv., Vol. 10, No. 51, pp. 30529-30602, 2020.   DOI
2 F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, "Graphene Photonics and Optoelectronics", Nat. Photonics, Vol. 4, No. 9, pp. 611-622, 2010.   DOI
3 N. Zhang, Y. Song, K. Zhou, and W. Wang, "Enhanced Performance of Solar-Blind Photodetector of Hexagonal Boron Nitride with Bottom-Contact Electrodes", AIP. Adv., Vol. 10, No. 8, p. 085013, 2020.   DOI
4 M. Telkhozhayeva, E. Teblum, R. Konar, O. Girshevitz, I. Perelshtein, H. Aviv, Y. R. Tischler, and G. D. Nessim, "Higher Ultrasonic Frequency Liquid Phase Exfoliation Leads to Larger and Monolayer to Few-Layer Flakes of 2D Layered Materials", Langmuir, Vol. 37, No. 15, pp. 4504- 4514, 2021.   DOI
5 W. Zhao, M. Fang, F. Wu, H. Wu, L. Wang, and G. Chen, "Preparation of Graphene by Exfoliation of Graphite Using Wet Ball Milling", J. Mater. Chem., Vol. 20, No. 28, pp. 5817-5819, 2010.   DOI
6 H. B. Lee and S. H. Hahm, "A highly integrable p-GaN MSM photodetector with GaN n-channel MISFET for UV image sensor system", J. Sens. Sci. Technol., Vol. 17, No. 5, pp. 346-349, 2008.   DOI
7 C. J. Lee and H. Park, "Surface Passivation Method for GaN UV Photodetectors Using Oxygen Annealing Treatment", J. Sens. Sci. Technol., Vol. 25, No. 4, pp. 252-256, 2016.   DOI
8 C. Xie, C. Mak, X. Tao, and F. Yan, "Photodetectors Based on Two-Dimensional Layered Materials Beyond Graphene", Adv. Funct. Mater., Vol. 27, No. 19, p. 1603886, 2017.   DOI
9 X. Chen, X. Lu, B. Deng, O. Sinai, Y. Shao, C. Li, S. Yuan, V. Tran, K. Watanabe, T. Taniguchi, D. Naveh, L. Yang, and F. Xia, "Widely Tunable Black Phosphorus Mid-Infrared Photodetector", Nat. Commun., Vol. 8, No. 1, p. 1672, 2017.   DOI
10 Q. Qiu and Z. Huang, "Photodetectors of 2D Materials from Ultraviolet to Terahertz Waves", Adv. Mater., Vol. 33, No. 15, p. 2008126, 2021.   DOI
11 J. Kang, V. K. Sangwan, J. D. Wood, and M. C. Hersam, "Solution-Based Processing of Monodisperse Two-Dimensional Nanomaterials", Acc. Chem. Res., Vol. 50, No. 4, pp. 943-951, 2017.   DOI
12 X. Gao, G. Bian, and J. Zhu, "Electronics from Solution-Processed 2D Semiconductors", J. Mater. Chem. C, Vol. 7, No. 41, pp. 12835-12861, 2019.   DOI
13 X. Cai, Y. Luo, B. Liu, and H. M. Cheng, "Preparation of 2D Material Dispersions and Their Applications", Chem. Soc. Rev., Vol. 47, No. 16, pp. 6224-6266, 2018.   DOI
14 F. I. Alzakia and S. C. Tan, "Liquid-Exfoliated 2D Materials for Optoelectronic Applications", Adv. Sci., Vol. 8, No. 11, p. 2003864, 2021.   DOI
15 S. Sucharitakul, N. J. Goble, U. R. Kumar, R. Sankar, Z. A. Bogorad, F. C. Chou, Y. T. Chen, and X. P. A. Gao, "Intrinsic Electron Mobility Exceeding 103 cm2/(V s) in Multilayer InSe FETs", Nano Lett., Vol. 15, No. 6, pp. 3815-3819, 2015.   DOI
16 J. Jang, P. Choi, H. K. Lyu, and J. K. Shin, "Photocurrent Characteristics of Gate/Body-Tied MOSFET-Type Photodetector with High Sensitivity", J. Sens. Sci. Technol., Vol. 31, No. 3, pp. 1-5, 2022.   DOI
17 J. Kang, S. A. Wells, V. K. Sangwan, D. Lam, X. Liu, J. Luxa, Z. Sofer, and M. C. Hersam, "Solution-Based Processing of Optoelectronically Active Indium Selenide", Adv. Mater., Vol. 30, No. 38, p. 1802990, 2018.   DOI
18 K. R. Paton, E. Varrla, C. Backes, R. J. Smith, U. Khan, A. O'Neill, C. Boland, M. Lotya, O. M. Istrate, P. King, T. Higgins, S. Barwich, P. May, P. Puczkarski, I. Ahmed, M. Moebius, H. Pettersson, E. Long, J. Coelho, S. E. O'Brien, E. K. McGuire, B. M. Sanchez, G. S. Duesberg, N. McEvoy, T. J. Pennycook, C. Downing, A. Crossley, V. Nicolosi, and J. N. Coleman, "Scalable Production of Large Quantities of Defect-Free Few-Layer Graphene by Shear Exfoliation in Liquids", Nat. Mater., Vol. 13, No. 6, pp. 624-630, 2014.   DOI
19 J. Zhu, J. Kang, J. Kang, D. Jariwala, J. D. Wood, J. W. T. Seo, K. S. Chen, T. J. Marks, and M. C. Hersam, "Solution-Processed Dielectrics Based on Thickness-Sorted TwoDimensional Hexagonal Boron Nitride Nanosheets", Nano Lett., Vol. 15, No. 10, pp. 7029-7036, 2015.   DOI
20 A. Chavez-Valdez, M. S. P. Shaffer, and A. R. Boccaccini, "Applications of Graphene Electrophoretic Deposition. A Review", J. Phys. Chem. B, Vol. 117, No. 6, pp. 1502-1515, 2013.   DOI
21 E. B. Secor, P. L. Prabhumirashi, K. Puntambekar, M. L. Geier, and M. C. Hersam, "Inkjet Printing of High Conductivity, Flexible Graphene Patterns", J. Phys. Chem. Lett., Vol. 4, No. 8, pp. 1347-1351, 2013.   DOI
22 A. G. Kelly, D. O'Suilleabhain, C. Gabbett, and J. N. Coleman, "The Electrical Conductivity of Solution-Processed Nanosheet Networks", Nat. Rev. Mater., Vol. 7, No. 3, pp. 217-234, 2022.
23 S. Veeralingam, L. Durai, P. Yadav, and S. Badhulika, "Record-High Responsivity and Detectivity of a Flexible Deep-Ultraviolet Photodetector Based on Solid State-Assisted Synthesized hBN Nanosheets", ACS Appl. Electron. Mater., Vol. 3, No. 3, pp. 1162-1169, 2021.   DOI
24 N. Curreli, M. Serri, D. Spirito, E. Lago, E. Petroni, B. Martin-Garcia, A. Politano, B. Gurbulak, S. Duman, R. Krahne, V. Pellegrini, and F. Bonaccorso, "Liquid Phase Exfoliated Indium Selenide Based Highly Sensitive Photodetectors", Adv. Funct. Mater., Vol. 30, No. 13, p. 1908427, 2020.   DOI
25 Z. Lin, Y. Huang, and X. Duan, "Van der Waals Thin-Film Electronics", Nat. Electron., Vol. 2, No. 9, pp. 378-388, 2019.   DOI
26 P. He, J. Cao, H. Ding, C. Liu, J. Neilson, Z. Li, I. A. Kinloch, and B. Derby, "Screen-Printing of a Highly Conductive Graphene Ink for Flexible Printed Electronics", ACS Appl. Mater. Interfaces, Vol. 11, No. 35, pp. 32225- 32234, 2019.   DOI
27 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films", Science, Vol. 306, No. 5696, pp. 666-669, 2004.   DOI
28 W. Zheng, R. Lin, Z. Zhang, and F. Huang, "Vacuum-Ultra-violet Photodetection in Few-Layered h-BN", ACS Appl. Mater. Interfaces, Vol. 10, No. 32, pp. 27116-27123, 2018.   DOI
29 R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O'Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, "Large-Scale Exfoliation of Inorganic Layered Compounds in Aqueous Surfactant Solutions", Adv. Mater., Vol. 23, No. 34, pp. 3944-3948, 2011.   DOI
30 J. Kang, V. K. Sangwan, H.-S. Lee, X. Liu, and M. C. Hersam, "Solution-Processed Layered Gallium Telluride ThinFilm Photodetectors", ACS Photonics, Vol. 5, No. 10, pp. 3996-4002, 2018.   DOI
31 G. Wang, Y. Zhang, C. You, B. Liu, Y. Yang, H. Li, A. Cui, D. Liu, and H. Yan, "Two Dimensional Materials Based Photodetectors", Infrared Phys. Technol., Vol. 88, No. pp. 149-173, 2018.   DOI
32 Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, "Single-Layer MoS2 Phototransistors", ACS Nano, Vol. 6, No. 1, pp. 74-80, 2012.   DOI
33 J. Li, M. M. Naiini, S. Vaziri, M. C. Lemme, and M. Ostling, "Inkjet Printing of MoS2", Adv. Funct. Mater., Vol. 24, No. 41, pp. 6524-6531, 2014.   DOI
34 W. Feng, J. B. Wu, X. Li, W. Zheng, X. Zhou, K. Xiao, W. Cao, B. Yang, J. C. Idrobo, L. Basile, W. Tian, P. Tan, and P. Hu, "Ultrahigh Photo-Responsivity and Detectivity in Multilayer InSe Nanosheets Phototransistors with Broadband Response", J. Mater. Chem. C, Vol. 3, No. 27, pp. 7022-7028, 2015.   DOI
35 O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, "Ultrasensitive Photodetectors Based on Monolayer MoS2", Nat. Nanotechnol., Vol. 8, No. 7, pp. 497-501, 2013.   DOI
36 Q. Guo, A. Pospischil, M. Bhuiyan, H. Jiang, H. Tian, D. Farmer, B. Deng, C. Li, S. J. Han, H. Wang, Q. Xia, T. P. Ma, T. Mueller, and F. Xia, "Black Phosphorus Mid-Infrared Photodetectors with High Gain", Nano Lett., Vol. 16, No. 7, pp. 4648-4655, 2016.   DOI
37 M. Huang, M. Wang, C. Chen, Z. Ma, X. Li, J. Han, and Y. Wu, "Broadband Black-Phosphorus Photodetectors with High Responsivity", Adv. Mater., Vol. 28, No. 18, pp. 3481- 3485, 2016.   DOI
38 Z. Lin, Y. Liu, U. Halim, M. Ding, Y. Liu, Y. Wang, C. Jia, P. Chen, X. Duan, C. Wang, F. Song, M. Li, C. Wan, Y. Huang, and X. Duan, "Solution-Processable 2D Semiconductors for High-Performance Large-Area Electronics", Nature, Vol. 562, No. 7726, pp. 254-258, 2018.   DOI
39 F. Bonaccorso, A. Bartolotta, J. N. Coleman, and C. Backes, "2D-Crystal-Based Functional Inks", Adv. Mater., Vol. 28, No. 29, pp. 6136-6166, 2016.   DOI
40 N. Huo and G. Konstantatos, "Recent Progress and Future Prospects of 2D-Based Photodetectors", Adv. Mater., Vol. 30, No. 51, p. 1801164, 2018.   DOI
41 L. Xu, A. R. Tetreault, H. H. Khaligh, I. A. Goldthorpe, S. D. Wettig, and M. A. Pope, "Continuous Langmuir- Blodgett Deposition and Transfer by Controlled Edge-toEdge Assembly of Floating 2D Materials", Langmuir, Vol. 35, No. 1, pp. 51-59, 2019.   DOI
42 J. Kim, S. Kim, Y. S. Cho, M. Choi, S. H. Jung, J. H. Cho, D. Whang, and J. Kang, "Solution-Processed MoS2 Film with Functional Interfaces via Precursor-Assisted Chemical Welding", ACS Appl. Mater. Interfaces, Vol. 13, No. 10, pp. 12221-12229, 2021.   DOI
43 Y. S. Cho, D. Rhee, H. J. Kim, H. S. Kim, J. M. Baik, and J. Kang, "Solution-Processed Graphene Thin-Film Enables Binder-Free, Efficient Loading of Nanocatalysts for Electrochemical Water Splitting", Adv. Mater. Interfaces, Vol. 8, No. 23, p. 2101576, 2021.   DOI
44 J. W. T. Seo, J. Zhu, V. K. Sangwan, E. B. Secor, S. G. Wallace, and M. C. Hersam, "Fully Inkjet-Printed, Mechanically Flexible MoS2 Nanosheet Photodetectors", ACS Appl. Mater. Interfaces, Vol. 11, No. 6, pp. 5675-5681, 2019.   DOI
45 P. Zhang, S. Yang, R. Pineda-Gomez, B. Ibarlucea, J. Ma, M. R. Lohe, T. F. Akbar, L. Baraban, G. Cuniberti, and X. Feng, "Electrochemically Exfoliated High-Quality 2H-MoS2 for Multiflake Thin Film Flexible Biosensors", Small, Vol. 15, No. 23, p. 1901265, 2019.
46 J. Kim, D. Rhee, O. Song, M. Kim, Y. H. Kwon, D. U. Lim, I. S. Kim, V. Mazanek, L. Valdman, Z. Sofer, J. H. Cho, and J. Kang, "All-Solution-Processed Van der Waals Heterostructures for Wafer-Scale Electronics", Adv. Mater., Vol. 34, No. 12, p. 2106110, 2022.   DOI
47 L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, "Black Phosphorus Field-Effect Transistors", Nat. Nanotechnol., Vol. 9, No. 5, pp. 372-377, 2014.   DOI
48 G. Hu, J. Kang, L. W. T. Ng, X. Zhu, R. C. T. Howe, C. G. Jones, M. C. Hersam, and T. Hasan, "Functional Inks and Printing of Two-Dimensional Materials", Chem. Soc. Rev., Vol. 47, No. 9, pp. 3265-3300, 2018.   DOI
49 J. Liu, S. Cristoloveanu, and J. Wan, "A Review on the Recent Progress of Silicon-on-Insulator-Based Photodetectors", Phys. Status Solidi A, Vol. 218, No. 14, p. 2000751, 2021.   DOI
50 T. Mueller, F. Xia, and P. Avouris, "Graphene Photodetectors for High-Speed Optical Communications", Nat. Photonics, Vol. 4, No. 5, pp. 297-301, 2010.   DOI
51 F. Xia, T. Mueller, Y.-m. Lin, A. Valdes-Garcia, and P. Avouris, "Ultrafast Graphene Photodetector", Nat. Nanotechnol., Vol. 4, No. 12, pp. 839-843, 2009.   DOI
52 J. Y. Cho, J. S. Kim, S. H. Son, J. H. Lee, and S. Y. Choi, "Fabrication and Characteristics of Infrared Photodiode Using Insb Wafer with p-i-n Structure", J. Sens. Sci. Technol., Vol. 8, No. 3, pp. 239-246, 1999.
53 T. Tan, X. Jiang, C. Wang, B. Yao, and H. Zhang, "2D Material Optoelectronics for Information Functional Device Applications: Status and Challenges", Adv. Sci., Vol. 7, No. 11, p. 2000058, 2020.   DOI