DOI QR코드

DOI QR Code

Morphology Control of Single Crystalline Rutile TiO2 Nanowires

  • Park, Yi-Seul (Department of Chemistry, Sookmyung Women's University) ;
  • Lee, Jin-Seok (Department of Chemistry, Sookmyung Women's University)
  • Received : 2011.07.07
  • Accepted : 2011.08.03
  • Published : 2011.10.20

Abstract

Nano-scaled metal oxides have been attractive materials for sensors, photocatalysis, and dye-sensitization for solar cells. We report the controlled synthesis and characterization of single crystalline $TiO_2$ nanowires via a catalyst-assisted vapor-liquid-solid (VLS) and vapor-solid (VS) growth mechanism during TiO powder evaporation. Scanning electron microscope (SEM) and transmission electron microscope (TEM) studies show that as grown $TiO_2$ materials are one-dimensional (1D) nano-structures with a single crystalline rutile phase. Also, energy-dispersive X-ray (EDX) spectroscopy indicates the presence of both Ti and O with a Ti/O atomic ratio of 1 to 2. Various morphologies of single crystalline $TiO_2$ nano-structures are realized by controlling the growth temperature and flow rate of carrier gas. Large amount of reactant evaporated at high temperature and high flow rate is crucial to the morphology change of $TiO_2$ nanowire.

Keywords

References

  1. Hahn, R.; Schmidt-Stein, F.; Salonen, J.; Thiemann, S.; Song, Y. Y.; Kunze, J.; Lehto, V. P.; Schmuki, P. Angew. Chem. Int. Ed. 2009, 48, 1. https://doi.org/10.1002/anie.200890275
  2. Boercker, J. A.; Enache-Pommer, E.; Aydil, E. S. Nanotechnology 2008, 19, 095604. https://doi.org/10.1088/0957-4484/19/9/095604
  3. Cao, B.; Yao, W.; Wang, C.; Ma, X.; Feng, X.; Lu, X. Materials Letters 2010, 64, 1819. https://doi.org/10.1016/j.matlet.2010.05.014
  4. Shi, J.; Sun, C.; Starr, M. B.; Wang, X. Nano Lett. 2011, 11, 624. https://doi.org/10.1021/nl103702j
  5. Wang, J.; Sun, J.; Bian, X. Materials Science and Engineering A 2004, 379, 7. https://doi.org/10.1016/S0921-5093(03)00625-7
  6. Nuansing, W.; Ninmuang, S.; Jarernboon, W.; Maensiri, S.; Seraphin, S. Materials Science and Engineering B 2006, 131, 147. https://doi.org/10.1016/j.mseb.2006.04.030
  7. Pijanowska, D. G.; Sprenkels, A. J.; van den Linden, H.; Olthuis, W.; Bergveld, P.; van den Berg, A. Sensors and Actuators B 2004, 103, 350. https://doi.org/10.1016/j.snb.2004.04.108
  8. Shiraishi, Y.; Sugano, Y.; Tanaka, S.; Hirai, T. Angew. Chem. Int. Ed. 2010, 49, 1656. https://doi.org/10.1002/anie.200906573
  9. Awazu, K.; Fujimaki, M.; Rockstuhl, C.; Tominaga, J.; Murakami, H.; Ohki, Y.; Yoshida, N.; Watanabe, T. J. Am. Chem. Soc. 2008, 130, 1676. https://doi.org/10.1021/ja076503n
  10. Qiu, Y.; Chen, W.; Yang, S. Angew. Chem. Int. Ed. 2010, 49, 3675. https://doi.org/10.1002/anie.200906933
  11. Woolerton, T. W.; Sheard, S.; Reisner, E.; Pierce, E.; Ragsdale, S. W.; Armstrong, F. A. J. Am. Chem. Soc. 2010, 132, 2132. https://doi.org/10.1021/ja910091z
  12. Park, J. H.; Kim, S. W.; Bard, A. J. Nano Lett. 2006, 6, 24. https://doi.org/10.1021/nl051807y
  13. Pang, C. L.; Lindsay, R.; Thornton, G. Chem. Soc. Rev. 2008, 37, 2328. https://doi.org/10.1039/b719085a
  14. Mao, S. S.; Chen, X. Int. J. Energy Res. 2007, 31, 619. https://doi.org/10.1002/er.1283
  15. Mao, S. S.; Chen, X. Int. J. Energy Res. 2007, 31, 619. https://doi.org/10.1002/er.1283
  16. Fabregat-Santiago, F.; Barea, E. M.; Bisquert, J.; Mor, G. K.; Shankar, K.; Grimes, C. A. J. Am. Chem. Soc. 2008, 130, 11312. https://doi.org/10.1021/ja710899q
  17. Liu, B.; Aydil, E. S. J. Am. Chem. Soc. 2009, 131, 3985. https://doi.org/10.1021/ja8078972
  18. Kolmakov, A.; Moskovits, M. Annu. Rev. Mater. Res. 2004, 34, 151. https://doi.org/10.1146/annurev.matsci.34.040203.112141
  19. Miao, Z.; Xu, D.; Ouyang, J.; Guo, G.; Zhao, X.; Tang, Y. Nano Lett. 2002, 2, 717. https://doi.org/10.1021/nl025541w
  20. Wei, M,; Qi, Z. M.; Ichihara, M.; Hirabayashi, M.; Honma, I.; Zhou, H. Journal of Crystal Growth 2006, 296, 1. https://doi.org/10.1016/j.jcrysgro.2006.08.014
  21. Lee, Y. H.; Yoo, J. M.; Park, D. H. Applied Physics Letters 2005, 86, 033110. https://doi.org/10.1063/1.1851614
  22. Kominami, H.; Ishii, Y.; Kohno, M.; Konishia, S.; Kera, Y.; Ohtanic, B. Catalysis Letters 2003, 91, 1. https://doi.org/10.1023/B:CATL.0000006310.50290.ba
  23. Amin, S. S.; Li, S. Y.; Wu, X.; Ding, W.; Xu, T. T. Nanoscale Res. Lett. 2010, 5, 338. https://doi.org/10.1007/s11671-009-9485-5
  24. Park, J. B.; Ryu, Y.; Kim, H. S.; Yu, C. H. Nanotechnology 2009, 20, 105608. https://doi.org/10.1088/0957-4484/20/10/105608
  25. Daothong, S.; Songmee, N.; Thongtem, S.; Singjai, P. Scripta Materialia 2007, 57, 567. https://doi.org/10.1016/j.scriptamat.2007.06.030
  26. Wu, J. J.; Yu, C. C. J. Phys. Chem. B 2004, 108, 3377. https://doi.org/10.1021/jp0361935
  27. Chen, C. A.; Chen, Y. M.; Korotcov, A.; Huang, Y. S.; Tsai, D. S.; Tiong, K. K. Nanotechnology 2008, 19, 075611. https://doi.org/10.1088/0957-4484/19/7/075611
  28. Yu, J.; Chen, Y.; Glushenkov, A. M. Crystal Growth & Design 2009, 9, 1240. https://doi.org/10.1021/cg801125w
  29. Baik, J. M.; Kim, M. H.; Larson, C.; Chen, X.; Guo, S.; Wodtke, A. M.; Moskovits, M. Applied Physics Letters 2008, 92, 242111. https://doi.org/10.1063/1.2949086
  30. Amin, S. S.; Nicholls, A. W.; Xu, T. T. Nanotechnology 2007, 18, 445609. https://doi.org/10.1088/0957-4484/18/44/445609
  31. Lee, J. S.; Brittman, S.; Yu, D.; Park, H. K. J. Am. Chem. Soc. 2008, 130, 6252. https://doi.org/10.1021/ja711481b
  32. Peng, H.; Meister, S.; Chan, C. K.; Zhang, X. F.; Cui, Y. Nano Lett. 2007, 7, 199. https://doi.org/10.1021/nl062047+

Cited by

  1. Nanowires Using Vapor-Liquid-Solid Process for the Osseointegration vol.22, pp.4, 2013, https://doi.org/10.5757/JKVS.2013.22.4.204
  2. One-Dimensional Titanium Dioxide Nanomaterials: Nanowires, Nanorods, and Nanobelts vol.114, pp.19, 2014, https://doi.org/10.1021/cr400633s
  3. High-yield synthesis of single-crystalline InSb nanowires by using control of the source container vol.64, pp.2, 2014, https://doi.org/10.3938/jkps.64.263
  4. Growing TiO2 nanowires by solid–liquid–solid mechanism including two factors (Ti and O) vol.122, pp.4, 2016, https://doi.org/10.1007/s00339-016-9963-4
  5. nanowiers/Si heterojunction arrays vol.23, pp.10, 2014, https://doi.org/10.1088/1674-1056/23/10/107302
  6. nanowires via thermal oxidation process in air vol.20, pp.6, 2016, https://doi.org/10.1179/1433075X15Y.0000000027
  7. Controlled fabrication of Sn/TiO 2 nanorods for photoelectrochemical water splitting vol.8, pp.1, 2011, https://doi.org/10.1186/1556-276x-8-462
  8. Seed-Assisted Growth of TiO 2 Nanowires by Thermal Oxidation for Chemical Gas Sensing vol.10, pp.5, 2011, https://doi.org/10.3390/nano10050935