• Title/Summary/Keyword: Lipschitz spaces

Search Result 82, Processing Time 0.019 seconds

A TECHNIQUE WITH DIMINISHING AND NON-SUMMABLE STEP-SIZE FOR MONOTONE INCLUSION PROBLEMS IN BANACH SPACES

  • Abubakar Adamu;Dilber Uzun Ozsahin;Abdulkarim Hassan Ibrahim;Pongsakorn Sunthrayuth
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.4
    • /
    • pp.1051-1067
    • /
    • 2023
  • In this paper, an algorithm for approximating zeros of sum of three monotone operators is introduced and its convergence properties are studied in the setting of 2-uniformly convex and uniformly smooth Banach spaces. Unlike the existing algorithms whose step-sizes usually depend on the knowledge of the operator norm or Lipschitz constant, a nice feature of the proposed algorithm is the fact that it requires only a diminishing and non-summable step-size to obtain strong convergence of the iterates to a solution of the problem. Finally, the proposed algorithm is implemented in the setting of a classical Banach space to support the theory established.

THE ALEKSANDROV PROBLEM AND THE MAZUR-ULAM THEOREM ON LINEAR n-NORMED SPACES

  • Yumei, Ma
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1631-1637
    • /
    • 2013
  • This paper generalizes the Aleksandrov problem and Mazur Ulam theorem to the case of $n$-normed spaces. For real $n$-normed spaces X and Y, we will prove that $f$ is an affine isometry when the mapping satisfies the weaker assumptions that preserves unit distance, $n$-colinear and 2-colinear on same-order.

BLOCH-TYPE SPACES ON THE UPPER HALF-PLANE

  • Fu, Xi;Zhang, Junding
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1337-1346
    • /
    • 2017
  • We define Bloch-type spaces of ${\mathcal{C}}^1({\mathbb{H}})$ on the upper half plane H and characterize them in terms of weighted Lipschitz functions. We also discuss the boundedness of a composition operator ${\mathcal{C}}_{\phi}$ acting between two Bloch spaces. These obtained results generalize the corresponding known ones to the setting of upper half plane.

MULTIPLICATION OPERATORS ON WEIGHTED BANACH SPACES OF A TREE

  • Allen, Robert F.;Craig, Isaac M.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.747-761
    • /
    • 2017
  • We study multiplication operators on the weighted Banach spaces of an infinite tree. We characterize the bounded and the compact operators, as well as determine the operator norm. In addition, we determine the spectrum of the bounded multiplication operators and characterize the isometries. Finally, we study the multiplication operators between the weighted Banach spaces and the Lipschitz space by characterizing the bounded and the compact operators, determining estimates on the operator norm, and showing there are no isometries.

SYSTEM OF GENERALIZED NONLINEAR MIXED VARIATIONAL INCLUSIONS INVOLVING RELAXED COCOERCIVE MAPPINGS IN HILBERT SPACES

  • Lee, Byung-Soo;Salahuddin, Salahuddin
    • East Asian mathematical journal
    • /
    • v.31 no.3
    • /
    • pp.383-391
    • /
    • 2015
  • We considered a new system of generalized nonlinear mixed variational inclusions in Hilbert spaces and define an iterative method for finding the approximate solutions of this class of system of generalized nonlinear mixed variational inclusions. We also established that the approximate solutions obtained by our algorithm converges to the exact solutions of a new system of generalized nonlinear mixed variational inclusions.

Approximation Solvability for a System of Nonlinear Variational Type Inclusions in Banach Spaces

  • Salahuddin, Salahuddin
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.1
    • /
    • pp.101-123
    • /
    • 2019
  • In this paper, we consider a system of nonlinear variational type inclusions involving ($H,{\varphi},{\eta}$)-monotone operators in real Banach spaces. Further, we define a proximal operator associated with an ($H,{\varphi},{\eta}$)-monotone operator and show that it is single valued and Lipschitz continuous. Using proximal point operator techniques, we prove the existence and uniqueness of a solution and suggest an iterative algorithm for the system of nonlinear variational type inclusions. Furthermore, we discuss the convergence of the iterative sequences generated by the algorithms.

NON-CONVEX HYBRID ALGORITHMS FOR A FAMILY OF COUNTABLE QUASI-LIPSCHITZ MAPPINGS CORRESPONDING TO KHAN ITERATIVE PROCESS AND APPLICATIONS

  • NAZEER, WAQAS;MUNIR, MOBEEN;NIZAMI, ABDUL RAUF;KAUSAR, SAMINA;KANG, SHIN MIN
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.3_4
    • /
    • pp.313-321
    • /
    • 2017
  • In this note we establish a new non-convex hybrid iteration algorithm corresponding to Khan iterative process [4] and prove strong convergence theorems of common fixed points for a uniformly closed asymptotically family of countable quasi-Lipschitz mappings in Hilbert spaces. Moreover, the main results are applied to get the common fixed points of finite family of quasi-asymptotically nonexpansive mappings. The results presented in this article are interesting extensions of some current results.

LIPSCHITZ TYPE CHARACTERIZATION OF FOCK TYPE SPACES

  • Hong Rae, Cho;Jeong Min, Ha
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1371-1385
    • /
    • 2022
  • For setting a general weight function on n dimensional complex space ℂn, we expand the classical Fock space. We define Fock type space $F^{p,q}_{{\phi},t}({\mathbb{C}}^n)$ of entire functions with a mixed norm, where 0 < p, q < ∞ and t ∈ ℝ and prove that the mixed norm of an entire function is equivalent to the mixed norm of its radial derivative on $F^{p,q}_{{\phi},t}({\mathbb{C}}^n)$. As a result of this application, the space $F^{p,q}_{{\phi},t}({\mathbb{C}}^n)$ is especially characterized by a Lipschitz type condition.

ON STRONG CONVERGENCE THEOREMS FOR A VISCOSITY-TYPE TSENG'S EXTRAGRADIENT METHODS SOLVING QUASIMONOTONE VARIATIONAL INEQUALITIES

  • Wairojjana, Nopparat;Pholasa, Nattawut;Pakkaranang, Nuttapol
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.2
    • /
    • pp.381-403
    • /
    • 2022
  • The main goal of this research is to solve variational inequalities involving quasimonotone operators in infinite-dimensional real Hilbert spaces numerically. The main advantage of these iterative schemes is the ease with which step size rules can be designed based on an operator explanation rather than the Lipschitz constant or another line search method. The proposed iterative schemes use a monotone and non-monotone step size strategy based on mapping (operator) knowledge as a replacement for the Lipschitz constant or another line search method. The strong convergences have been demonstrated to correspond well to the proposed methods and to settle certain control specification conditions. Finally, we propose some numerical experiments to assess the effectiveness and influence of iterative methods.