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SMALL LIPSCHITZ MAPS OF
CONTINUOUS FUNCTION SPACES

KIL-WOUNG JUN, YOUNG-WHAN LEE AND KYOO-HONG PARK

1. Introduction

For a locally compact Hausdorff space X and a Banach space G
we denote by Co(X,G) the space of G-valued continuous functions on
X which vanish at infinity, provided with the supremum norm.

The classical Banach-Stone theorem states that if Co(X,C) and
Co(Y,C) are isometrically isomorphic, then X and Y are homeo-
morphic. Amir [1] and Cambern [3] proved that this result is stable:
if there is a linear homeomorphism T from Co(X,C) onto Co(Y,C)
with ||T|||IT!}] < 2 then Cp(X,C) and Cy(Y,C) are actually isomet-
rically isomorphic. Also Cambern (4], Jarosz [10] and many authors [2,
6, 7, 8, 9, 12] have considered problems of determining geometric prop-
erties of G which allow generalizations of this theorem to the spaces
of vector-valued functions Co(X,G). In [11], Jarosz proved a general-
ization dealing with scalar-valued functions, but replaced isometries by
nonlinear isomorphisms.

In this paper, we consider a generalization dealing with the Banach
algebra valued functions. Qur result is similar to Theorem 1 in [11]. But
it is a nonlinear generalization of the Banach-Stone theorem on spaces
of a Banach algebra-valued continuous functions.

I1I. Small Lipschitz maps of Cy(X,G)

Let G be a unital Banach algebra satisfying the following conditions;
(1) Thereis ¢ > 1 such that for every a,b in G with {al],]|d]] > 1,

max{lla + bf|,[la - dl|} =
(2) For every a € G, a is left invertible.
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For example, R* has these conditions with a norm

"(a7b7c)d)" = \/02 + b2 +c2 4 d?

and a multiplication

(a1, b1, c1,d1)(az, b2, c2,d2)
= (@162 — biby — c1c2 — did, a1 + brag + c1dy — cadh,
ajcy + c1az — bydz + dyby,a1dy + dyay + bycy — c1bs)

For a closed subspace A of Cy(X,G), we denote by ChA the set
of all points z¢9 € X such that for any ¢ > 0 and any neighborhood
U of 20 € X thereisan f in A with ||f||=1, f(ze)=¢€¢ (e is
unit in G) and ||f(z)]] <€ for z€ X —U. A is called an almost
extremely regular subspace of Co(X,G) if ChA is densein X and
is called extremely regular if ChA = X.

For 29 in X a net (fo)aeca C Co(X,G) is called peaking at =z,
if

(i) Va€eA, |fall=1, fo(ze)=e and

(i1) fo — 0 uniformly off any neighborhood of z,

We denote by Pa(zg) the set of all nets (fa)aea in A such that
(fa)eer peaks at zo. We define (af)(z) = a- f(z) for every a in
G and f in A. Amap T is called e-bi-Lipschitz from a Banach
space E into a Banach space F if

(1=ellf —gll < ITf - Tgll < (1 +€)||f - gll-

To prove Theorem 1, we need the following proposition [5].

PROPOSITION A. Let T be an ¢-bi-Lipschitz map from a Banach
space E onto a Banach space F, with ¢ <% and T0=0. Then for
any f,g in E with ||f]l,llg]l £2 we have

ITf+Ty)-T(f+9)ll <€,
Wf+gll—€¢ <WTF+Tglf < If +gll +¢

where &' =100¢75.
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THEOREM 1. Let X,Y be locally compact Hausdorff spaces, A an
almost extremely regular subspace of Co(X,G) and B an extremely
regular subspace of Cy(Y,G).

Assume there is an e-bi-Lipschitz map T from A onto B with
€ < €9 such that T(af) = a(Tf) for f € Co(X,G) and a € G.
Then there is a homeomorphism ¢ from X onto Y and

HITf(()l = If @) | S cle)lfll, (fed zeX)

where €o is an absolute constant and c(e) = 0 as € — 0.

Proof. We divide the proof into a number of simple steps and at
various points of the proof we use inequalities involving ¢ which are
valid only if ¢ is sufficiently small. In these circumstances we will merely
assume that ¢ is near zero. These assumptions are the source of &g
and €'=100¢76. Fix M >0. For any zo € X we set

Sxo ={y € Y : 3(.fat)o:EA € PA(-TO)a 3 (ya)aEA - Y, Ya — Y
and Va €A, ||Tfa(va)ll > M}.

STeP 1. If M < 1—¢—¢', then for any zo € ChA we have
Szo # 0.

Proof of Step 1. For any ¢ > 0 and any neighborhood Ug of =zg
there is fg € A with ||fg|]| =1, fa(zo) = e and ||fs(z)|| < ¢ for
z € X — Ug. By Proposition A,

M<1-e—e <|fsll ' <ITfll = sup T fa()ll-
y
If Y is compact, thereis yg € Y such that ||Tfg(yg)ll > M. Then
(yg) has a convergent subnet. Thus S, # 0.

To consider the general case, let (fu)aca € Pa(zo). Fix ag € A.
Then for any o € A,

Mfat fal =2, 2= S|ITfa+Tfall, ITfull <1+e.
Thus for any y in ¥V with ||Tf.(d)||<1—-e—-¢

1T fa(y) + Tfao)lf < 2 ¢
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and so
sup{ITfa(¥)l : y €Y, |ITfae(®ll 21 ~e—€'} 21 -e—¢' 2 M.

Since {y € Y|||Tfao(¥)ll 21 —€ —€'} is compact, we can choose a net
(Yya)aea in Y suchthat y, — y and for any a € A, ||Tf(y)l| > M.
Therefore S,, # 0.

STEP 2. If M > -15+2€', then for any zo € ChA the set S,, has

at most one point.

Proof of Step 2. Assume yl,y? are two distinct points of S, and
let (fi)aca; € Pa(o0), (¥)aca; CY (i =1,2) be the corresponding
nets given by the definition of S,;,. Without loss of generality we can
assume that

(T~ ai e

with |la’]] > M for i =1,2. Since B is extremely regular there are
g1,92 € B such that

i a’ :
gi(¥")=—m fori=1,2,  sup|llgs()ll +llo2)ll | <1+ (c—1)e".
llatll yeY

We have )
Lminf |Tf, +yil| 21+ M, i =1,2.

By Proposition A,

lim inf Ifi+Tlgll 21+ M—-¢, i=12

Since (f%) is a peaking sequence,
fle+ T lg(zo)| 21+ M€, i=1,2

and so
IT lgi(zo))| > M —€', i=1,2

By the definition of G and Proposition A, we get

max(||T g1 + T g2/, 1T 91 — T g2|l) > (M - ¢'),
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max(|lg: + g2]l, llg1 — g2ll) S (M —€') — €' > 14+ (c - 1),

which contradicts the assumption
sup | [lg1 (I + lg2(Wll | <1+ (c—1)e'.
yeY
In the remaining part of the proof we assume that
%+2€' <M=1-¢-¢
and we define ¢: ChA —Y by {¢(z)} = S..

We denote 9G; = {a € G| |a]| = 1}.

STEP 3. Fix z¢ € ChA and fo € A with [[fo]l =1, fo(z0) = e.
For any a € 0G; we define x(a) = T(afo)(¢(x0)). Then
(i) For every a € 0G; ||x(a)]| 2 M,

(i) {29y :a €86} =06,

Proof of Step 3. (i) Choose a net (fo)aca in Pa(zo). Asin Step
1, we have |lafo + afoll =2 for every a € A. Hence

IT(afe) + T(afo)| 22—¢€', (a€A)
and therefore
sup{|[T(afo)W)ll: vy €Y, |T(af)W=1-e—-€}>1-e-¢"

1t follows that there is a net (yo) such that

IT(afe)ya)ll 21—e—¢',  [T(afo)(ya)l 21—e—¢"

By the definition of S.,, sup{||[T(afo)(y)ll :y € Sz} 21-¢€' —e&.
Since S, = {6(a0)}, we get x(a)] > M.
(i) f b€ OGy, let a= pipddezl_  5G,. Then
x(@) _ a-Thid(o) _,
lix(a)ll e - Tfo(d(zo))

So it holds.
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STEP 4. For every fo € A with ||fo]l £1+¢ and z € ChA we

have
WT fo(S(z DIl < | fo(2)|| + € + 3¢’
Proof of Step 4. We have

1+ || fo(=)ll + ¢’
> inf{sup{||fo +af||:a € IG1}: f € A, ||fll =1, f(z) = €}

and by Step 3,
M + ||T fo($(x)I|
< 1T (af) (SN + IT fo(S(=)

< inf{sup{|ITfo + T(af)l : a € 8G1} : € A Ifl = 1, f(z) = e}
<1+ [lfo(@)l +2¢".

Hence by the assumption that M =1 —¢ —¢’,

T fo($(@NN < I fo(@)l} + ¢ + 3¢".

STEP 5. Fix x9 € ChA and y € B with g(¢(zo)) = e and
llyll = 1. For any a € 8G,; we define K(a)=T"(ag)(zy). Then we
have

(i) For any a € 0G1,||K(a)|| 21— 3¢’ —¢,

(i) {Fdy:a€dG}=0G.

Proof of Step 5. It is an immediate consequence of Step 4.

STEP 6. For any fo € A with ||fo]l <1+2 and zy € ChA we

have
IT fo(¢(zo )Nl 2 Il fo(zo)ll — 5¢.

Proof of Step 6. Since B is extremely regular, thereisa g € B such
that |lgll = 1, 9(#(z0)) = ¢ and

IT oIl + gl < 1+ ITfo((zo))ll +4¢, yeY.
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By Step 5, there is a a € 8G; such that
lfo + T~ (ag)ll = I fo(zo)ll +1 - 3¢" —&.
Hence by Proposition A,
ITfo + agll 2 || fo(zo)|| + (1 — 3" —€) - &'.
Therefore

IT fo(¢(zo))ll 2 |Tfo + agll — 1 + 4¢ > [Ifo(=o)l] — B¢

Following steps are immediate consequences of proofs of Theorem 1
in [11].

STEP 7. ¢ can be extended to a continuous function from X into
Y. We denote the extended function by the same symbol.

STEP 8. If X is non-compact, then neither is Y and ¢ can
be extended to a continuous map from X* = X U {co} (one point
compactification of X) into Y* =Y U {c0}.

STEP 9. ¢ maps X onto Y.
STEP 10. ¢ is injective.

Now by Steps 7-10, ¢ is a homeomorphism from X onto Y. And
from Step 4 and Step 6 with c(¢) = 5¢' = 50065,

HIT A - 1F (@l | < llfll (f € 4, = € X).
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