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SMALL LIPSCHITZ MAPS OF

CONTINUOUS FUNCTION SPACES

KIL-WOUNG JUN, YOUNG-WHAN LEE AND KYOO-HONG PARK

I. Introduction

For a locally compact Hausdorff space X and a Banach space G
we denote by Co(X, G) the space of G-valued continuous functions on
X which vanish at infinity, provided with the supremum norm.

The classical Banach-Stone theorem states that if Co (X, C) and
Co(Y, C) are isometrically isomorphic, then X and Y are homeo
morphic. Amir [1] and Cambem [3] proved that this result is stable:
if there is a linear homeomorphism T from Co(X, C) onto Co(Y, C)
with IITIIIIT-1 11 < 2 then Co(X,C) and Co(Y,C) areactuallyisomet
rically isomorphic. Also Cambem [4], Jarosz [10] and many authors [2,
6, 7, 8,9, 12] have considered problems of determining geometric prop
erties of G which allow generalizations of this theorem to the spaces
of vector-valued functions Co(X, G). In [11], Jarosz proved a general
ization dealing with scalar-valued functions, but replaced isometries by
nonlinear isomorphisms.

In this paper, we consider a generalization dealing with the Banach
algebra valued functions. Our result is similar to Theorem 1 in [11]. But
it is a nonlinear generalization of the Banach-Stone theorem on spaces
of a Banach algebra-valued continuous functions.

II. Small Lipschitz maps of Co(X, G)

Let G be a unital Banach algebra satisfying the following conditions;
(1) There is c > 1 such that for every a, b in G with lIall, IIbll ~ 1,

max{lIa + bll, lIa - bll} ~ c

(2) For every a E G, a is left invertible.
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For example, R.4 has these conditions with a norm

lIea, b, c, d)1I = Ja2 + b2 + c2 + J2

and a multiplication

(at, bI , Ct, d I )(a2, b2, C2, d2)

= (aI a 2 - bI~ - CIC2 - dId2,aI~ +bt a2 +cI d2 - C2dI,

aI c2 + CI a 2 - bI d2 + dI b2 ,aI d2 +dI a2 + bI C2 - cI b2)

For a closed subspace A of Co(X, G), we denote by ChA the set
of all points Xo E X such that for any c > 0 and any neighborhood
U of Xo E X there is an I in A with 11/11 = 1, I(xo) = e (e is
unit in G) and II/(x)1I < c for x EX - U. A is called an almost
extremely regular subspace of Co(X,G) if ChA is dense in X and
is called extremely regular if ChA = X.

For Xo in X a net (fa)aEA C Co(X, G) is called peaking at Xo,
if

(i) Va E A, II/all = 1, la(xo) = e and
(ii) I a -+ 0 uniformly off any neighborhood of Xo
We denote by PA(XO) the set of all nets (fa)aEA in A such that

(/a)aEA peaks at xo. We define (af)(x) = a . I(x) for every a in
G and I in A. A map T is called c-bi-Lipschitz from a Banach
space E into a Banach space F if

(1- c)1I1 - gil ~ IITI - TglI ~ (1 + c)1I1 - gil·

To prove Theorem 1, we need the following proposition [5].

PIlOPOSITION A. Let T be an e-bi-Lipscbitz map from a Banach
space E onto a Banach space F, with c < i and TO = O. Then for
any I,g in E with lilli, IIgll ~ 2 we have

II(TI +Ty) - T(f + g)1I ~ c',

III +gil - c' ~ liTI + Tgli ~ II! +gil +c'

where c'=lOOc to .
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THEOREM 1. Let X, Y be locally compact Hausdorff spaces, A an
almost extremely regular subspace of Co(X,G) and B an extremely
regular subspace of Co(Y, G).

Assume there is an £-bi-Lipscbitz map T from A onto B with
£ ::; £0 such that T(aJ) = a(TJ) for f E Co(X, G) and a E G.
Then there is a homeomorphism 4> from X onto Y and

I IITf(4)(x))II-lIf(x)1I I ::; c(£)lIfll, (f E A, x EX)

where £0 is an absolute constant and c(£) -+ 0 as £ -+ O.

Proof. We divide the proof into a number of simple steps and at
various points of the proof we use inequalities involving £ which are
valid only if £ is sufficiently small. In these circumstances we will merely
assume that £ is near zero. These assumptions are the source of £0

and £'=100£110 • Fix M ~ O. For any Xo E X we set

Sxo ={y E Y : 3(fa)aEA E PA(xo), ::I (Ya)aEA C ~ Ya -+ Y

and Va E A, . IITfa(Ya)1I ~ M}.

STEP 1. If M ::; 1 - e - e', then for any Xo E ChA we have
Sxo ;;J 0.

Proof of Step 1. For any £ > 0 and any neighborhood Up of Xo

there is fp E A with IIfpll = 1, fp(xo) = e and IIfp(x)11 < e for
x E X - Up. By Proposition A,

M::; 1- £ - e' ::; IIfpll- e' ::; II T fpll = sup IITfp(y)lI.
yEY

IT Y is compact, there is yp E Y such that IITfp(yp)1I ~ M. Then
(yp) has a convergent subnet. Thus Sxo;;J 0.

To consider the general case, let (fa)aEA E PA(XO)' Fix ao E A.
Then for any a E A,

IIfa + faoll = 2, 2 - e' ::; IITfa +Tfaoll, IITfall::; 1 + e.

Thus for any Y in Y with IITfa(b)1I < 1 - £ - e'

IITfa(Y) + Tfao(Y)1I < 2 - e'
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and so

sup{IITfa(y)1I : Y E Y, IITfao(b)1I :2: 1- e - e'}:2: 1- e - e' :2: M.

Since {y E YIIITfao(y)1I :2: 1 - e - e'} is compact, we can choose a net
(Ya)aEA in Y such that Ya --+ Y and for any a E A, IITfa(y)lI:2: M.
Therefore Sxo:f:. 0.

STEP 2. H M:2: ! + 2e', then for any Xo E ChA the set Sxo has
at most one point.

Proof of Step 2. Assume y1 , y2 are two distinct points of Sxo and
let (f~)aEA, E PA(xo), (Y~)aEA, C Y (i = 1,2) be the corresponding
nets given by the definition of Sxo. Without loss of generality we can
assume that

. . aEA, .
(Tf~)(y~) ---+ a l E G

with lIaill:2: M for i = 1,2.
91,92 E B such that

We have

Since B is extremely regular there are

sup I 1191 (y)1I + 1192(y)1I1 < 1 +(c -l)e'.
yEY

liminf IITf~ + Yill :2: 1+M, i = 1,2.
a

By Proposition A,

liminf IIf~ + T- 19ill :2: 1 + M - e', i = 1,2.
a

Since (f~ ) is a peaking sequence,

and so
IIT- 19i(Xo)1I :2: M - e', i = 1,2.

By the definition of G and Proposition A, we get
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max(1I9I + 9211, 1191 - 9211) ~ c(M - £') - £' > 1 + (c -1)£',

which contradicts the assumption

sup I 1191 (y)1I + 1192(y)1I1 < 1 + (c -1)£'.
yEY

In the remaining part of the proof we assume that

1, I
-+2£ <M=l-£-£
C

and we define ¢>: ChA -t Y by {¢>(x)} = Sx.

We denote aGI = {a E Gillall = I}.

STEP 3. Fix Xo E ChA and /0 E A with 11/011 = 1,/0(xo) = e.
For any a E aGI we define x(a) = T(a/o)(¢>(xo». Then

(i) For every a E aGI IIx(a)1I ~ M,

(li) {II~:~II: a E aGIl = aGI ·

Proof of Step 3. (i) Choose a net (fex)exEA in PA(xo). As in Step
1, we have lIa/ex + a/oil = 2 for every a E A. Hence

IIT(a/ex ) + T(a/o)1I ~ 2 - £', (a E A)

and therefore

sup{IIT(a/o)(y)1I : y E Y, IIT(a/ex )(y)1I ~ 1- £ - £'} ~ 1- £ - £'.

It follows that there is a net (Yex) such that

IIT(a/ex )(Yex)1I ~ 1- £ - £', IIT(a/o)(Yex)1I ~ 1- £ - £'.

By the definition of Sxo' sup{IIT(a/o)(y)lI: y E Sxo} ~ 1 - £' - £.

Since Sxo = {¢>(xo)}, we get IIx(a)1I ~ M.

(.. ) If b aG 1 t b·(T/o)(.p(xO»-l aG Th
11 E b e a = IIb-(Tfo)(.p(xo» 111 E 1. en

x(a) = a· T/o(¢>(xo» = b.
IIx(a)1I lIa· T/o(¢>(xo»11

So it holds.
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STEP 4. For evelY 10 E A with 111011 ~ 1 + £' and x E ChA we
have

IITlo(</>(x»1I ~ IIlo(x)lI+e+3e'.

Proof of Step 4. We have

1 + 1I10(x)1I + e'
~ inf{sup{lIlo + afll : a E aGd : / E A, 11111 = 1,/(x) = e}

and by Step 3,

M + IIT/o(</>(x»11
~ IIT (af)(</>(x»1I + IIT/o(</>(x»11
:=:; inf{sup{IIT/o+ T(af)1I : a E aGd : / E A, II/II =1,j(x) = e}

:=:; 1 + lI/o(x)1I + 2e'.

Hence by the assumption that M = 1 - e - e' ,

IIT/o(</>(x»11 ~ lI/o(x)lI+e+3c:'.

STEP 5. Fix Xo E ChA and y E B with g(</>(xo» = e and
lIyll = 1. For any a E 001 we define K(a) =T-l(ag)(xo). Then we
have

(i) For any a E aGb IIK(a)1I ~ 1- 3e' - e,
(ii) {II~~:~II : a E aGd =aGI .

Proof of Step 5. It is an immediate consequence of Step 4.

STEP 6. For any /0 E A with 11/011 ~ 1 + 2e and Xo E ChA we
have

IIT/o(</>(xo»11 ~ IIfo(xo)II - 5e'.

Proof of Step 6. Since B is extremely regular, there is agE B such
that IIgl1 = 1, g(</>(xo» = e and

IITlo(y)1I + IIg(y)1I ~ 1 + IIT/o(</>(xo»11 + 4£, y E Y.
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By Step 5, there is a a E 8G1 such that

lifo +T-1(ag)1I ~ IIfo(xo)1I + 1 - 3c' - c.

Hence by Proposition A,

IITfo + agll ~ IIfo(xo)1I + (1 - 3e;' - c) - c'.

Therefore

IITfo(<p(xo))1I ~ IITfo + agll-1 +4c ~ IIfo(xo)lI- Sci.
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Following steps are immediate consequences of proofs of Theorem 1
in [11].

STEP 7. 4> can be extended to a continuous function from X into
Y. We denote the extended function by the same symbol.

STEP 8. If X is non-compact, then neither is Y and 4> can
be extended to a continuous map from X· = X U {<X>} (one point
compactmcation of X) into Y· = Y U {<X>}.

STEP 9. 4> maps X onto Y.

STEP 10. <P is injective.

Now by Steps 7-10, 4> is a homeomorphism from X onto Y. And
from Step 4 and Step 6 with c(c) = 5c' = 500e to ,

III(TJ)<p(x)II-lIf(x)1I1 ~ c(e)lIfll (J E A, x EX).
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