SMALL LIPSCHITZ MAPS OF CONTINUOUS FUNCTION SPACES

Kil-Woung Jun, Young-Whan Lee and Kyoo-Hong Park

I. Introduction

For a locally compact Hausdorff space X and a Banach space G we denote by $C_{0}(X, G)$ the space of G-valued continuous functions on X which vanish at infinity, provided with the supremum norm.

The classical Banach-Stone theorem states that if $C_{0}(X, \mathbb{C})$ and $C_{0}(Y, \mathbb{C})$ are isometrically isomorphic, then X and Y are homeomorphic. Amir [1] and Cambern [3] proved that this result is stable: if there is a linear homeomorphism T from $C_{0}(X, \mathbb{C})$ onto $C_{0}(Y, \mathbb{C})$ with $\|T\|\left\|T^{-1}\right\|<2$ then $C_{0}(X, \mathbb{C})$ and $C_{0}(Y, \mathbb{C})$ are actually isometrically isomorphic. Also Cambern [4], Jarosz [10] and many authors [2, $6,7,8,9,12]$ have considered problems of determining geometric properties of G which allow generalizations of this theorem to the spaces of vector-valued functions $C_{0}(X, G)$. In [11], Jarosz proved a generalization dealing with scalar-valued functions, but replaced isometries by nonlinear isomorphisms.

In this paper, we consider a generalization dealing with the Banach algebra valued functions. Our result is similar to Theorem 1 in [11]. But it is a nonlinear generalization of the Banach-Stone theorem on spaces of a Banach algebra-valued continuous functions.

II. Small Lipschitz maps of $C_{0}(X, G)$

Let G be a unital Banach algebra satisfying the following conditions; (1) There is $c>1$ such that for every a, b in G with $\|a\|,\|b\| \geq 1$,

$$
\max \{\|a+b\|,\|a-b\|\} \geq c
$$

(2) For every $a \in G, a$ is left invertible.

Received July 10, 1992.
Supported by the KOSEF, project no.91-08-0008

For example, \mathbb{R}^{4} has these conditions with a norm

$$
\|(a, b, c, d)\|=\sqrt{a^{2}+b^{2}+c^{2}+d^{2}}
$$

and a multiplication

$$
\begin{aligned}
& \left(a_{1}, b_{1}, c_{1}, d_{1}\right)\left(a_{2}, b_{2}, c_{2}, d_{2}\right) \\
& \quad=\left(a_{1} a_{2}-b_{1} b_{2}-c_{1} c_{2}-d_{1} d_{2}, a_{1} b_{2}+b_{1} a_{2}+c_{1} d_{2}-c_{2} d_{1}\right. \\
& \left.\quad a_{1} c_{2}+c_{1} a_{2}-b_{1} d_{2}+d_{1} b_{2}, a_{1} d_{2}+d_{1} a_{2}+b_{1} c_{2}-c_{1} b_{2}\right)
\end{aligned}
$$

For a closed subspace A of $C_{0}(X, G)$, we denote by $C h A$ the set of all points $x_{0} \in X$ such that for any $\varepsilon>0$ and any neighborhood U of $x_{0} \in X$ there is an f in A with $\|f\|=1, \quad f\left(x_{0}\right)=e \quad(e$ is unit in G) and $\|f(x)\|<\varepsilon$ for $x \in X-U . \quad A$ is called an almost extremely regular subspace of $C_{0}(X, G)$ if $C h A$ is dense in X and is called extremely regular if $C h A=X$.

For x_{0} in X a net $\left(f_{\alpha}\right)_{\alpha \in \Lambda} \subset C_{0}(X, G)$ is called peaking at x_{0}, if
(i) $\forall \alpha \in \Lambda, \quad\left\|f_{\alpha}\right\|=1, \quad f_{\alpha}\left(x_{0}\right)=e$ and
(ii) $f_{\alpha} \rightarrow 0$ uniformly off any neighborhood of x_{0}

We denote by $P_{A}\left(x_{0}\right)$ the set of all nets $\left(f_{\alpha}\right)_{\alpha \in \Lambda}$ in A such that $\left(f_{\alpha}\right)_{\alpha \in \Lambda}$ peaks at x_{0}. We define $(a f)(x)=a \cdot f(x)$ for every a in G and f in A. A map T is called ε-bi-Lipschitz from a Banach space E into a Banach space F if

$$
(1-\varepsilon)\|f-g\| \leq\|T f-T g\| \leq(1+\varepsilon)\|f-g\| .
$$

To prove Theorem 1, we need the following proposition [5].
Proposition A. Let T be an ε-bi-Lipschitz map from a Banach space E onto a Banach space F, with $\varepsilon<\frac{1}{3}$ and $T 0=0$. Then for any f, g in E with $\|f\|,\|g\| \leq 2$ we have

$$
\begin{gathered}
\|(T f+T y)-T(f+g)\| \leq \varepsilon^{\prime}, \\
\|f+g\|-\varepsilon^{\prime} \leq\|T f+T g\| \leq\|f+g\|+\varepsilon^{\prime}
\end{gathered}
$$

where $\varepsilon^{\prime}=100 \varepsilon^{\frac{1}{10}}$.

Theorem 1. Let X, Y be locally compact Hausdorff spaces, A an almost extremely regular subspace of $C_{0}(X, G)$ and B an extremely regular subspace of $C_{0}(Y, G)$.

Assume there is an ε-bi-Lipschitz map T from A onto B with $\varepsilon \leq \varepsilon_{0}$ such that $T(a f)=a(T f)$ for $f \in C_{0}(X, G)$ and $a \in G$. Then there is a homeomorphism ϕ from X onto Y and

$$
|\|T f(\phi(x))\|-\|f(x)\|| \leq c(\varepsilon)\|f\|, \quad(f \in A, \quad x \in X)
$$

where ε_{0} is an absolute constant and $c(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$.
Proof. We divide the proof into a number of simple steps and at various points of the proof we use inequalities involving ε which are valid only if ε is sufficiently small. In these circumstances we will merely assume that ε is near zero. These assumptions are the source of ε_{0} and $\varepsilon^{\prime}=100 \varepsilon^{\frac{1}{10}}$. Fix $M \geq 0$. For any $x_{0} \in X$ we set

$$
\begin{gathered}
S_{x_{0}}=\left\{y \in Y: \exists\left(f_{\alpha}\right)_{\alpha \in \Lambda} \in P_{A}\left(x_{0}\right), \quad \exists\left(y_{\alpha}\right)_{\alpha \in \Lambda} \subset Y, \quad y_{\alpha} \rightarrow y\right. \\
\text { and } \left.\quad \forall \alpha \in \Lambda, \quad\left\|T f_{\alpha}\left(y_{\alpha}\right)\right\| \geq M\right\} .
\end{gathered}
$$

Step 1. If $M \leq 1-\varepsilon-\varepsilon^{\prime}$, then for any $x_{0} \in C h A$ we have $S_{x_{0}} \neq \emptyset$.

Proof of Step 1. For any $\varepsilon>0$ and any neighborhood U_{β} of x_{0} there is $f_{\beta} \in A$ with $\left\|f_{\beta}\right\|=1, f_{\beta}\left(x_{0}\right)=e$ and $\left\|f_{\beta}(x)\right\|<\varepsilon$ for $x \in X-U_{\beta}$. By Proposition A,

$$
M \leq 1-\varepsilon-\varepsilon^{\prime} \leq\left\|f_{\beta}\right\|-\varepsilon^{\prime} \leq\left\|T f_{\beta}\right\|=\sup _{y \in Y}\left\|T f_{\beta}(y)\right\| .
$$

If Y is compact, there is $y_{\beta} \in Y$ such that $\left\|T f_{\beta}\left(y_{\beta}\right)\right\| \geq M$. Then $\left(y_{\beta}\right)$ has a convergent subnet. Thus $S_{x_{0}} \neq \emptyset$.

To consider the general case, let $\left(f_{\alpha}\right)_{\alpha \in \Lambda} \in P_{A}\left(x_{0}\right)$. Fix $\alpha_{0} \in \Lambda$. Then for any $\alpha \in \Lambda$,

$$
\left\|f_{\alpha}+f_{\alpha_{0}}\right\|=2, \quad 2-\varepsilon^{\prime} \leq\left\|T f_{\alpha}+T f_{\alpha_{0}}\right\|, \quad\left\|T f_{\alpha}\right\| \leq 1+\varepsilon .
$$

Thus for any y in Y with $\left\|T f_{\alpha}(b)\right\|<1-\varepsilon-\varepsilon^{\prime}$

$$
\left\|T f_{\alpha}(y)+T f_{\alpha_{0}}(y)\right\|<2-\varepsilon^{\prime}
$$

and so

$$
\sup \left\{\left\|T f_{\alpha}(y)\right\|: y \in Y,\left\|T f_{\alpha_{0}}(b)\right\| \geq 1-\varepsilon-\varepsilon^{\prime}\right\} \geq 1-\varepsilon-\varepsilon^{\prime} \geq M
$$

Since $\left\{y \in Y \mid\left\|T f_{\alpha_{0}}(y)\right\| \geq 1-\varepsilon-\varepsilon^{\prime}\right\}$ is compact, we can choose a net $\left(y_{\alpha}\right)_{\alpha \in \Lambda}$ in Y such that $y_{\alpha} \rightarrow y$ and for any $\alpha \in \Lambda,\left\|T f_{\alpha}(y)\right\| \geq M$. Therefore $S_{x_{0}} \neq \emptyset$.

STEP 2. If $M \geq \frac{1}{2}+2 \varepsilon^{\prime}$, then for any $x_{0} \in C h A$ the set $S_{x_{0}}$ has at most one point.

Proof of Step 2. Assume y^{1}, y^{2} are two distinct points of $S_{x_{0}}$ and let $\left(f_{\alpha}^{i}\right)_{\alpha \in \Lambda_{i}} \in P_{A}\left(x_{0}\right),\left(y_{\alpha}^{i}\right)_{\alpha \in \Lambda_{i}} \subset Y(i=1,2)$ be the corresponding nets given by the definition of $S_{x_{0}}$. Without loss of generality we can assume that

$$
\left(T f_{\alpha}^{i}\right)\left(y_{\alpha}^{i}\right) \xrightarrow{\alpha \in \Lambda_{i}} a^{i} \in G
$$

with $\left\|a^{i}\right\| \geq M$ for $i=1,2$. Since B is extremely regular there are $g_{1}, g_{2} \in B$ such that

$$
g_{i}\left(y^{i}\right)=\frac{a^{i}}{\left\|a^{i}\right\|} \text { for } i=1,2, \quad \sup _{y \in Y}\left|\left\|g_{1}(y)\right\|+\left\|g_{2}(y)\right\|\right|<1+(c-1) \varepsilon^{\prime}
$$

We have

$$
\liminf _{\alpha}\left\|T f_{\alpha}^{i}+y_{i}\right\| \geq 1+M, i=1,2
$$

By Proposition A,

$$
\liminf _{\alpha}\left\|f_{\alpha}^{i}+T^{-1} g_{i}\right\| \geq 1+M-\varepsilon^{\prime}, \quad i=1,2
$$

Since $\left(f_{\alpha}^{i}\right)$ is a peaking sequence,

$$
\left\|e+T^{-1} g_{i}\left(x_{0}\right)\right\| \geq 1+M-\varepsilon^{\prime}, \quad i=1,2
$$

and so

$$
\left\|T^{-1} g_{i}\left(x_{0}\right)\right\| \geq M-\varepsilon^{\prime}, \quad i=1,2
$$

By the definition of G and Proposition A, we get

$$
\max \left(\left\|T^{-1} g_{1}+T^{-1} g_{2}\right\|,\left\|T^{-1} g_{1}-T^{-1} g_{2}\right\|\right) \geq c\left(M-\varepsilon^{\prime}\right)
$$

$$
\max \left(\left\|g_{1}+g_{2}\right\|,\left\|g_{1}-g_{2}\right\|\right) \geq c\left(M-\varepsilon^{\prime}\right)-\varepsilon^{\prime}>1+(c-1) \varepsilon^{\prime}
$$

which contradicts the assumption

$$
\sup _{y \in Y}\left|\left\|g_{1}(y)\right\|+\left\|g_{2}(y)\right\|\right|<1+(c-1) \varepsilon^{\prime} .
$$

In the remaining part of the proof we assume that

$$
\frac{1}{c}+2 \varepsilon^{\prime}<M=1-\varepsilon-\varepsilon^{\prime}
$$

and we define $\phi: C h A \rightarrow Y$ by $\{\phi(x)\}=S_{x}$.
We denote $\partial G_{1}=\{a \in G \mid\|a\|=1\}$.
Step 3. Fix $x_{0} \in C h A$ and $f_{0} \in A$ with $\left\|f_{0}\right\|=1, f_{0}\left(x_{0}\right)=e$. For any $a \in \partial G_{1}$ we define $\chi(a)=T\left(a f_{0}\right)\left(\phi\left(x_{0}\right)\right)$. Then
(i) For every $a \in \partial G_{1} \quad\|\chi(a)\| \geq M$,
(ii) $\left\{\frac{x(a)}{\|x(a)\|}: a \in \partial G_{1}\right\}=\partial G_{1}$.

Proof of Step 3. (i) Choose a net $\left(f_{\alpha}\right)_{\alpha \in \Lambda}$ in $P_{A}\left(x_{0}\right)$. As in Step 1 , we have $\left\|a f_{\alpha}+a f_{0}\right\|=2$ for every $\alpha \in \Lambda$. Hence

$$
\left\|T\left(a f_{\alpha}\right)+T\left(a f_{0}\right)\right\| \geq 2-\varepsilon^{\prime}, \quad(\alpha \in \Lambda)
$$

and therefore

$$
\sup \left\{\left\|T\left(a f_{0}\right)(y)\right\|: y \in Y, \quad\left\|T\left(a f_{\alpha}\right)(y)\right\| \geq 1-\varepsilon-\varepsilon^{\prime}\right\} \geq 1-\varepsilon-\varepsilon^{\prime}
$$

It follows that there is a net $\left(y_{\alpha}\right)$ such that

$$
\left\|T\left(a f_{\alpha}\right)\left(y_{\alpha}\right)\right\| \geq 1-\varepsilon-\varepsilon^{\prime}, \quad\left\|T\left(a f_{0}\right)\left(y_{\alpha}\right)\right\| \geq 1-\varepsilon-\varepsilon^{\prime}
$$

By the definition of $S_{x_{0}}, \quad \sup \left\{\left\|T\left(a f_{0}\right)(y)\right\|: y \in S_{x_{0}}\right\} \geq 1-\varepsilon^{\prime}-\varepsilon$. Since $S_{x_{0}}=\left\{\phi\left(x_{0}\right)\right\}$, we get $\|\chi(a)\| \geq M$.
(ii) If $b \in \partial G_{1}$, let $a=\frac{b \cdot\left(T f_{0}\right)\left(\phi\left(x_{0}\right)\right)^{-1}}{\left\|b \cdot\left(T f_{0}\right)\left(\phi\left(x_{0}\right)\right)^{-1}\right\|} \in \partial G_{1}$. Then

$$
\frac{\chi(a)}{\|\chi(a)\|}=\frac{a \cdot T f_{0}\left(\phi\left(x_{0}\right)\right)}{\left\|a \cdot T f_{0}\left(\phi\left(x_{0}\right)\right)\right\|}=b
$$

So it holds.

Step 4. For every $f_{0} \in A$ with $\left\|f_{0}\right\| \leq 1+\varepsilon^{\prime}$ and $x \in C h A$ we have

$$
\left\|T f_{0}(\phi(x))\right\| \leq\left\|f_{0}(x)\right\|+\varepsilon+3 \varepsilon^{\prime} .
$$

Proof of Step 4. We have

$$
\begin{aligned}
& 1+\left\|f_{0}(x)\right\|+\varepsilon^{\prime} \\
& \quad \geq \inf \left\{\sup \left\{\left\|f_{0}+a f\right\|: a \in \partial G_{1}\right\}: f \in A,\|f\|=1, f(x)=e\right\}
\end{aligned}
$$

and by Step 3,

$$
\begin{aligned}
M & +\left\|T f_{0}(\phi(x))\right\| \\
& \leq\|T(a f)(\phi(x))\|+\left\|T f_{0}(\phi(x))\right\| \\
& \leq \inf \left\{\sup \left\{\left\|T f_{0}+T(a f)\right\|: a \in \partial G_{1}\right\}: f \in A,\|f\|=1, f(x)=e\right\} \\
& \leq 1+\left\|f_{0}(x)\right\|+2 \varepsilon^{\prime} .
\end{aligned}
$$

Hence by the assumption that $M=1-\varepsilon-\varepsilon^{\prime}$,

$$
\left\|T f_{0}(\phi(x))\right\| \leq\left\|f_{0}(x)\right\|+\varepsilon+3 \varepsilon^{\prime}
$$

STEP 5. Fix $x_{0} \in C h A$ and $y \in B$ with $g\left(\phi\left(x_{0}\right)\right)=e$ and $\|y\|=1$. For any $a \in \partial G_{1}$ we define $K(a)=T^{-1}(a g)\left(x_{0}\right)$. Then we have
(i) For any $a \in \partial G_{1},\|K(a)\| \geq 1-3 \varepsilon^{\prime}-\varepsilon$,
(ii) $\left\{\frac{K(a)}{\|K(a)\|}: a \in \partial G_{1}\right\}=\partial G_{1}$.

Proof of Step 5. It is an immediate consequence of Step 4.
Step 6. For any $f_{0} \in A$ with $\left\|f_{0}\right\| \leq 1+2 \varepsilon$ and $x_{0} \in C h A$ we have

$$
\left\|T f_{0}\left(\phi\left(x_{0}\right)\right)\right\| \geq\left\|f_{0}\left(x_{0}\right)\right\|-5 \varepsilon^{\prime} .
$$

Proof of Step 6. Since B is extremely regular, there is a $g \in B$ such that $\|g\|=1, g\left(\phi\left(x_{0}\right)\right)=e$ and

$$
\left\|T f_{0}(y)\right\|+\|g(y)\| \leq 1+\left\|T f_{0}\left(\phi\left(x_{0}\right)\right)\right\|+4 \varepsilon, \quad y \in Y .
$$

By Step 5, there is a $a \in \partial G_{1}$ such that

$$
\left\|f_{0}+T^{-1}(a g)\right\| \geq\left\|f_{0}\left(x_{0}\right)\right\|+1-3 \varepsilon^{\prime}-\varepsilon .
$$

Hence by Proposition A,

$$
\left\|T f_{0}+a g\right\| \geq\left\|f_{0}\left(x_{0}\right)\right\|+\left(1-3 \varepsilon^{\prime}-\varepsilon\right)-\varepsilon^{\prime} .
$$

Therefore

$$
\left\|T f_{0}\left(\phi\left(x_{0}\right)\right)\right\| \geq\left\|T f_{0}+a g\right\|-1+4 \varepsilon \geq\left\|f_{0}\left(x_{0}\right)\right\|-5 \varepsilon^{\prime} .
$$

Following steps are immediate consequences of proofs of Theorem 1 in [11].

STEP 7. ϕ can be extended to a continuous function from X into Y. We denote the extended function by the same symbol.

Step 8. If X is non-compact, then neither is Y and ϕ can be extended to a continuous map from $X^{*}=X \cup\{\infty\}$ (one point compactification of X) into $Y^{*}=Y \cup\{\infty\}$.

Step 9. ϕ maps X onto Y.
STEP 10. ϕ is injective.
Now by Steps $7-10, \phi$ is a homeomorphism from X onto Y. And from Step 4 and Step 6 with $c(\varepsilon)=5 \varepsilon^{\prime}=500 \varepsilon^{\frac{1}{10}}$,

$$
|\|(T f) \phi(x)\|-\|f(x)\|| \leq c(\varepsilon)\|f\| \quad(f \in A, x \in X) .
$$

References

1. D. Amir, On Isomorphisms of Continuous Function Spaces, Israel J. Math. 3 (1965), 205-210.
2. E. Behrend and M. Cambern, An Isomorphic Banach-Stone Theorem, Studia Math. 90 (1988), 15-26.
3. M.Cambern, A Generalized Banach-Stone Theorem, Proc. Amer. Math. Soc. 17 (1966).
4. , Isomorphisms of Spaces of Continuous Vector-Valued Functions, Illinois J. Math. 20 (1976).
5. J. Gevirtz, Injectivity in Banach Spaces and the Mazur-Ulam Theorem on Isometries, Trans. Amer. Math. Soc. 274 (1982), 307-318.
6. \qquad Stability of Isometries on Banach-Stone Theorem, Studia Math. 73 (1982), 33-39.
7. K. Jarosz, A Generalization of Banach-Stone Theorem, Studia Math. 73 (1982), 33-39.
8. \qquad Into Isomorphisms of Spaces of Continuous Functions, Proc. Amer. Math. Soc. 90 (1984), 373-377.
9. Small Isomorphisms between Operator Algebras, Proc. Edinburgh Math. Soc. 28 (1985), 121-131.
10. \qquad , Perturbations of Banach Algebras, Lecture Notes in Math., vol. 1120, Springer-Verlag, 1985.
11. , Nonlinear Generalizations of the Banach-Stone Theorem, Studia Math. (1989), 97-107.
12. R. Rochberg, Deformation of Uniform Algebras on Riemann Surfaces, Pacific J. Math. 121 (1986), 135-181.

Department of Mathematics
Chungnam National University
Taejon 305-764, Korea
Department of Mathematics
Taejon University
Taejon 300-716, Korea
Department of Mathematics Education
Seowon University
Chongju 360-742, Korea

