Comm. Korean Math. Soc. 8 (1993), No. 2, pp. 247-254

SMALL LIPSCHITZ MAPS OF CONTINUOUS FUNCTION SPACES

KIL-WOUNG JUN, YOUNG-WHAN LEE AND KYOO-HONG PARK

I. Introduction

For a locally compact Hausdorff space X and a Banach space G we denote by $C_0(X,G)$ the space of G-valued continuous functions on X which vanish at infinity, provided with the supremum norm.

The classical Banach-Stone theorem states that if $C_0(X, \mathbb{C})$ and $C_0(Y, \mathbb{C})$ are isometrically isomorphic, then X and Y are homeomorphic. Amir [1] and Cambern [3] proved that this result is stable: if there is a linear homeomorphism T from $C_0(X, \mathbb{C})$ onto $C_0(Y, \mathbb{C})$ with $||T||||T^{-1}|| < 2$ then $C_0(X, \mathbb{C})$ and $C_0(Y, \mathbb{C})$ are actually isometrically isomorphic. Also Cambern [4], Jarosz [10] and many authors [2, 6, 7, 8, 9, 12] have considered problems of determining geometric properties of G which allow generalizations of this theorem to the spaces of vector-valued functions $C_0(X, G)$. In [11], Jarosz proved a generalization dealing with scalar-valued functions, but replaced isometries by nonlinear isomorphisms.

In this paper, we consider a generalization dealing with the Banach algebra valued functions. Our result is similar to Theorem 1 in [11]. But it is a nonlinear generalization of the Banach-Stone theorem on spaces of a Banach algebra-valued continuous functions.

II. Small Lipschitz maps of $C_0(X,G)$

Let G be a unital Banach algebra satisfying the following conditions; (1) There is c > 1 such that for every a, b in G with $||a||, ||b|| \ge 1$,

$$\max\{\|a+b\|, \|a-b\|\} \ge c$$

(2) For every $a \in G$, a is left invertible.

Received July 10, 1992.

Supported by the KOSEF, project no.91-08-0008

For example, \mathbb{R}^4 has these conditions with a norm

$$||(a, b, c, d)|| = \sqrt{a^2 + b^2 + c^2 + d^2}$$

and a multiplication

$$(a_1, b_1, c_1, d_1)(a_2, b_2, c_2, d_2) = (a_1a_2 - b_1b_2 - c_1c_2 - d_1d_2, a_1b_2 + b_1a_2 + c_1d_2 - c_2d_1, a_1c_2 + c_1a_2 - b_1d_2 + d_1b_2, a_1d_2 + d_1a_2 + b_1c_2 - c_1b_2)$$

For a closed subspace A of $C_0(X,G)$, we denote by ChA the set of all points $x_0 \in X$ such that for any $\varepsilon > 0$ and any neighborhood U of $x_0 \in X$ there is an f in A with ||f|| = 1, $f(x_0) = e$ (e is unit in G) and $||f(x)|| < \varepsilon$ for $x \in X - U$. A is called an almost extremely regular subspace of $C_0(X,G)$ if ChA is dense in X and is called extremely regular if ChA = X.

For x_0 in X a net $(f_{\alpha})_{\alpha \in \Lambda} \subset C_0(X,G)$ is called peaking at x_0 , if

(i) $\forall \alpha \in \Lambda$, $||f_{\alpha}|| = 1$, $f_{\alpha}(x_0) = e$ and

(ii) $f_{\alpha} \to 0$ uniformly off any neighborhood of x_0

We denote by $P_A(x_0)$ the set of all nets $(f_\alpha)_{\alpha \in \Lambda}$ in A such that $(f_\alpha)_{\alpha \in \Lambda}$ peaks at x_0 . We define $(af)(x) = a \cdot f(x)$ for every a in G and f in A. A map T is called ε -bi-Lipschitz from a Banach space E into a Banach space F if

$$(1-\varepsilon)\|f-g\| \le \|Tf-Tg\| \le (1+\varepsilon)\|f-g\|.$$

To prove Theorem 1, we need the following proposition [5].

PROPOSITION A. Let T be an ε -bi-Lipschitz map from a Banach space E onto a Banach space F, with $\varepsilon < \frac{1}{3}$ and T0 = 0. Then for any f, g in E with $||f||, ||g|| \le 2$ we have

$$\|(Tf + Ty) - T(f + g)\| \le \varepsilon',$$
$$\|f + g\| - \varepsilon' \le \|Tf + Tg\| \le \|f + g\| + \varepsilon'$$

where $\varepsilon' = 100\varepsilon^{\frac{1}{10}}$.

THEOREM 1. Let X, Y be locally compact Hausdorff spaces, A an almost extremely regular subspace of $C_0(X,G)$ and B an extremely regular subspace of $C_0(Y,G)$.

Assume there is an ε -bi-Lipschitz map T from A onto B with $\varepsilon \leq \varepsilon_0$ such that T(af) = a(Tf) for $f \in C_0(X,G)$ and $a \in G$. Then there is a homeomorphism ϕ from X onto Y and

$$|||Tf(\phi(x))|| - ||f(x)||| \le c(\varepsilon)||f||, \quad (f \in A, x \in X)$$

where ε_0 is an absolute constant and $c(\varepsilon) \to 0$ as $\varepsilon \to 0$.

Proof. We divide the proof into a number of simple steps and at various points of the proof we use inequalities involving ε which are valid only if ε is sufficiently small. In these circumstances we will merely assume that ε is near zero. These assumptions are the source of ε_0 and $\varepsilon'=100\varepsilon^{\frac{1}{10}}$. Fix $M \ge 0$. For any $x_0 \in X$ we set

$$S_{x_0} = \{ y \in Y : \exists (f_{lpha})_{lpha \in \Lambda} \in P_A(x_0), \quad \exists \ (y_{lpha})_{lpha \in \Lambda} \subset Y, \quad y_{lpha} o y \ ext{ and } \quad orall lpha \in \Lambda, \quad \|Tf_{lpha}(y_{lpha})\| \geq M \}.$$

STEP 1. If $M \leq 1 - \varepsilon - \varepsilon'$, then for any $x_0 \in ChA$ we have $S_{x_0} \neq \emptyset$.

Proof of Step 1. For any $\varepsilon > 0$ and any neighborhood U_{β} of x_0 there is $f_{\beta} \in A$ with $||f_{\beta}|| = 1$, $f_{\beta}(x_0) = e$ and $||f_{\beta}(x)|| < \varepsilon$ for $x \in X - U_{\beta}$. By Proposition A,

$$M \leq 1 - \varepsilon - \varepsilon' \leq ||f_{\beta}|| - \varepsilon' \leq ||Tf_{\beta}|| = \sup_{y \in Y} ||Tf_{\beta}(y)||.$$

If Y is compact, there is $y_{\beta} \in Y$ such that $||Tf_{\beta}(y_{\beta})|| \ge M$. Then (y_{β}) has a convergent subnet. Thus $S_{x_0} \neq \emptyset$.

To consider the general case, let $(f_{\alpha})_{\alpha \in \Lambda} \in P_A(x_0)$. Fix $\alpha_0 \in \Lambda$. Then for any $\alpha \in \Lambda$,

$$||f_{\alpha}+f_{\alpha_0}||=2, \quad 2-\varepsilon'\leq ||Tf_{\alpha}+Tf_{\alpha_0}||, \quad ||Tf_{\alpha}||\leq 1+\varepsilon.$$

Thus for any y in Y with $||Tf_{\alpha}(b)|| < 1 - \varepsilon - \varepsilon'$

$$\|Tf_{\alpha}(y) + Tf_{\alpha_0}(y)\| < 2 - \varepsilon$$

and so

 $\sup\{\|Tf_{\alpha}(y)\|: y \in Y, \|Tf_{\alpha_0}(b)\| \ge 1 - \varepsilon - \varepsilon'\} \ge 1 - \varepsilon - \varepsilon' \ge M.$

Since $\{y \in Y | \|Tf_{\alpha_0}(y)\| \ge 1 - \varepsilon - \varepsilon'\}$ is compact, we can choose a net $(y_{\alpha})_{\alpha \in \Lambda}$ in Y such that $y_{\alpha} \to y$ and for any $\alpha \in \Lambda$, $\|Tf_{\alpha}(y)\| \ge M$. Therefore $S_{x_0} \neq \emptyset$.

STEP 2. If $M \geq \frac{1}{2} + 2\varepsilon'$, then for any $x_0 \in ChA$ the set S_{x_0} has at most one point.

Proof of Step 2. Assume y^1, y^2 are two distinct points of S_{x_0} and let $(f^i_{\alpha})_{\alpha \in \Lambda_i} \in P_A(x_0), (y^i_{\alpha})_{\alpha \in \Lambda_i} \subset Y \ (i = 1, 2)$ be the corresponding nets given by the definition of S_{x_0} . Without loss of generality we can assume that

$$(Tf^i_{\alpha})(y^i_{\alpha}) \xrightarrow{\alpha \in \Lambda_i} a^i \in G$$

with $||a^i|| \ge M$ for i = 1, 2. Since B is extremely regular there are $g_1, g_2 \in B$ such that

$$g_i(y^i) = rac{a^i}{\|a^i\|} ext{ for } i = 1, 2, \qquad \sup_{y \in Y} \|g_1(y)\| + \|g_2(y)\| \| < 1 + (c-1)\varepsilon'.$$

We have

$$\liminf_{\alpha} \|Tf_{\alpha}^{i} + y_{i}\| \ge 1 + M, \ i = 1, 2.$$

By Proposition A,

$$\liminf_{\alpha} \|f^i_{\alpha} + T^{-1}g_i\| \ge 1 + M - \varepsilon', \quad i = 1, 2.$$

Since (f^i_{α}) is a peaking sequence,

$$||e + T^{-1}g_i(x_0)|| \ge 1 + M - \varepsilon', \quad i = 1, 2$$

and so

$$||T^{-1}g_i(x_0)|| \ge M - \varepsilon', \quad i = 1, 2.$$

By the definition of G and Proposition A, we get

$$\max(\|T^{-1}g_1+T^{-1}g_2\|,\|T^{-1}g_1-T^{-1}g_2\|) \ge c(M-\varepsilon'),$$

Small Lipschitz maps of continuous function spaces

 $\max(\|g_1 + g_2\|, \|g_1 - g_2\|) \ge c(M - \varepsilon') - \varepsilon' > 1 + (c - 1)\varepsilon',$

which contradicts the assumption

$$\sup_{\mathbf{y}\in Y} | \|g_1(y)\| + \|g_2(y)\| | < 1 + (c-1)\varepsilon'.$$

In the remaining part of the proof we assume that

$$\frac{1}{c} + 2\varepsilon' < M = 1 - \varepsilon - \varepsilon'$$

and we define $\phi: ChA \to Y$ by $\{\phi(x)\} = S_x$. We denote $\partial G_1 = \{a \in G | ||a|| = 1\}.$

STEP 3. Fix $x_0 \in ChA$ and $f_0 \in A$ with $||f_0|| = 1, f_0(x_0) = e$. For any $a \in \partial G_1$ we define $\chi(a) = T(af_0)(\phi(x_0))$. Then

- (i) For every $a \in \partial G_1$ $||\chi(a)|| \ge M$, (ii) $\left(\begin{array}{c} \chi(a) \\ \chi(a) \end{array} \right) = \left(\begin{array}{c} 2G \\ 2G \end{array} \right) = \left(\begin{array}{c} 2G \\ 2G \end{array} \right)$
- (ii) $\left\{\frac{\chi(a)}{\|\chi(a)\|}: a \in \partial G_1\right\} = \partial G_1.$

Proof of Step 3. (i) Choose a net $(f_{\alpha})_{\alpha \in \Lambda}$ in $P_A(x_0)$. As in Step 1, we have $||af_{\alpha} + af_0|| = 2$ for every $\alpha \in \Lambda$. Hence

$$\|T(af_{\alpha}) + T(af_{0})\| \ge 2 - \varepsilon', \quad (\alpha \in \Lambda)$$

and therefore

$$\sup\{\|T(af_0)(y)\|: y \in Y, \quad \|T(af_\alpha)(y)\| \ge 1-\varepsilon-\varepsilon'\} \ge 1-\varepsilon-\varepsilon'.$$

It follows that there is a net (y_{α}) such that

$$\|T(af_{\alpha})(y_{\alpha})\| \geq 1 - \varepsilon - \varepsilon', \qquad \|T(af_0)(y_{\alpha})\| \geq 1 - \varepsilon - \varepsilon'.$$

By the definition of S_{x_0} , $\sup\{\|T(af_0)(y)\| : y \in S_{x_0}\} \ge 1 - \varepsilon' - \varepsilon$. Since $S_{x_0} = \{\phi(x_0)\}$, we get $\|\chi(a)\| \ge M$. (ii) If $b \in \partial G_1$, let $a = \frac{b \cdot (Tf_0)(\phi(x_0))^{-1}}{\|b \cdot (Tf_0)(\phi(x_0))^{-1}\|} \in \partial G_1$. Then

$$\frac{\chi(a)}{\|\chi(a)\|} = \frac{a \cdot Tf_0(\phi(x_0))}{\|a \cdot Tf_0(\phi(x_0))\|} = b.$$

So it holds.

STEP 4. For every $f_0 \in A$ with $||f_0|| \le 1 + \varepsilon'$ and $x \in ChA$ we have

$$||Tf_0(\phi(x))|| \leq ||f_0(x)|| + \varepsilon + 3\varepsilon'.$$

Proof of Step 4. We have

$$1 + ||f_0(x)|| + \varepsilon'$$

$$\geq \inf\{\sup\{||f_0 + af|| : a \in \partial G_1\} : f \in A, ||f|| = 1, f(x) = e\}$$

and by Step 3,

$$\begin{split} M + \|Tf_0(\phi(x))\| \\ &\leq \|T(af)(\phi(x))\| + \|Tf_0(\phi(x))\| \\ &\leq \inf\{\sup\{\|Tf_0 + T(af)\| : a \in \partial G_1\} : f \in A, \|f\| = 1, f(x) = e\} \\ &\leq 1 + \|f_0(x)\| + 2\varepsilon'. \end{split}$$

Hence by the assumption that $M = 1 - \varepsilon - \varepsilon'$,

$$||Tf_0(\phi(x))|| \leq ||f_0(x)|| + \varepsilon + 3\varepsilon'.$$

STEP 5. Fix $x_0 \in ChA$ and $y \in B$ with $g(\phi(x_0)) = e$ and ||y|| = 1. For any $a \in \partial G_1$ we define $K(a) = T^{-1}(ag)(x_0)$. Then we have

(i) For any $a \in \partial G_1$, $||K(a)|| \ge 1 - 3\varepsilon' - \varepsilon$, (ii) $\{\frac{K(a)}{||K(a)||} : a \in \partial G_1\} = \partial G_1$.

Proof of Step 5. It is an immediate consequence of Step 4.

STEP 6. For any $f_0 \in A$ with $||f_0|| \le 1 + 2\varepsilon$ and $x_0 \in ChA$ we have

$$||Tf_0(\phi(x_0))|| \ge ||f_0(x_0)|| - 5\varepsilon'.$$

Proof of Step 6. Since B is extremely regular, there is a $g \in B$ such that ||g|| = 1, $g(\phi(x_0)) = e$ and

$$||Tf_0(y)|| + ||g(y)|| \le 1 + ||Tf_0(\phi(x_0))|| + 4\varepsilon, \quad y \in Y.$$

By Step 5, there is a $a \in \partial G_1$ such that

$$||f_0 + T^{-1}(ag)|| \ge ||f_0(x_0)|| + 1 - 3\varepsilon' - \varepsilon.$$

Hence by Proposition A,

$$||Tf_0 + ag|| \geq ||f_0(x_0)|| + (1 - 3\varepsilon' - \varepsilon) - \varepsilon'.$$

Therefore

$$||Tf_0(\phi(x_0))|| \ge ||Tf_0 + ag|| - 1 + 4\varepsilon \ge ||f_0(x_0)|| - 5\varepsilon'.$$

Following steps are immediate consequences of proofs of Theorem 1 in [11].

STEP 7. ϕ can be extended to a continuous function from X into Y. We denote the extended function by the same symbol.

STEP 8. If X is non-compact, then neither is Y and ϕ can be extended to a continuous map from $X^* = X \cup \{\infty\}$ (one point compactification of X) into $Y^* = Y \cup \{\infty\}$.

STEP 9. ϕ maps X onto Y.

STEP 10. ϕ is injective.

Now by Steps 7-10, ϕ is a homeomorphism from X onto Y. And from Step 4 and Step 6 with $c(\varepsilon) = 5\varepsilon' = 500\varepsilon^{\frac{1}{10}}$,

$$| ||(Tf)\phi(x)|| - ||f(x)|| | \le c(\varepsilon)||f|| \quad (f \in A, x \in X).$$

References

- 1. D. Amir, On Isomorphisms of Continuous Function Spaces, Israel J. Math. 3 (1965), 205-210.
- E. Behrend and M. Cambern, An Isomorphic Banach-Stone Theorem, Studia Math. 90 (1988), 15-26.
- 3. M.Cambern, A Generalized Banach-Stone Theorem, Proc. Amer. Math. Soc. 17 (1966).
- _____, Isomorphisms of Spaces of Continuous Vector-Valued Functions, Illinois J. Math. 20 (1976).

- 5. J. Gevirtz, Injectivity in Banach Spaces and the Mazur-Ulam Theorem on Isometries, Trans. Amer. Math. Soc. 274 (1982), 307–318.
- 6. ____, Stability of Isometries on Banach-Stone Theorem, Studia Math. 73 (1982), 33-39.
- 7. K. Jarosz, A Generalization of Banach-Stone Theorem, Studia Math. 73 (1982), 33-39.
- 8. _____, Into Isomorphisms of Spaces of Continuous Functions, Proc. Amer. Math. Soc. 90 (1984), 373-377.
- 9. ____, Small Isomorphisms between Operator Algebras, Proc. Edinburgh Math. Soc. 28 (1985), 121-131.
- 10. ____, Perturbations of Banach Algebras, Lecture Notes in Math., vol. 1120, Springer-Verlag, 1985.
- 11. _____, Nonlinear Generalizations of the Banach-Stone Theorem, Studia Math. (1989), 97-107.
- 12. R. Rochberg, Deformation of Uniform Algebras on Riemann Surfaces, Pacific J. Math. 121 (1986), 135–181.

Department of Mathematics Chungnam National University Taejon 305-764, Korea

Department of Mathematics Taejon University Taejon 300-716, Korea

Department of Mathematics Education Seowon University Chongju 360-742, Korea