Bull. Korean Math. Soc. **59** (2022), No. 6, pp. 1371–1385

https://doi.org/10.4134/BKMS.b210783 pISSN: 1015-8634 / eISSN: 2234-3016

LIPSCHITZ TYPE CHARACTERIZATION OF FOCK TYPE SPACES

HONG RAE CHO AND JEONG MIN HA

ABSTRACT. For setting a general weight function on n dimensional complex space \mathbb{C}^n , we expand the classical Fock space. We define Fock type space $F^{p,q}_{\phi,t}(\mathbb{C}^n)$ of entire functions with a mixed norm, where $0 < p,q < \infty$ and $t \in \mathbb{R}$ and prove that the mixed norm of an entire function is equivalent to the mixed norm of its radial derivative on $F^{p,q}_{\phi,t}(\mathbb{C}^n)$. As a result of this application, the space $F^{p,p}_{\phi,t}(\mathbb{C}^n)$ is especially characterized by a Lipschitz type condition.

1. Introduction

Equivalent norms of an analytic function and its derivative have been extensively proved. It is known as a Littlewood-Paley formula, which is useful to analyze an analytic function space in the study of questions related to a derivative. In [8] and [9], mixed norm equivalence for an analytic function and its higher order derivative and mixed norm equivalence for an analytic function and derivative on the unit disc are proved, respectively. In [4], equivalence of mixed norms of an entire function and its derivative on a weighted Fock space on complex plane $\mathbb C$ is researched and Condition $\mathcal L$ for a weight function class is introduced. A Littlewood-Paley formula plays a key role in the proof of boundedness and compactness of an integral operator such as Volterra type operator. In [1] and [5], it is verified that two mixed norms of an entire function and its radial derivative are equivalent on n dimensional complex space \mathbb{C}^n . In addition, research has been conducted on Lipschitz type characterization for the Bergman space with a standard weight in terms of the Euclidean, hyperbolic, and pseudohyperbolic metrics on the unit disc in [10]. These results are generalized to the unit ball of \mathbb{C}^n in [6] and [7]. Lipschitz type characterization of the classical and weighted Fock spaces on \mathbb{C}^n have been proved in [2] and [3], respectively. For positive p, q, and real t, we define Fock type space $F_{\phi,t}^{p,q}(\mathbb{C}^n)$

Received October 27, 2021; Revised March 25, 2022; Accepted June 15, 2022. 2010 Mathematics Subject Classification. 32A37, 30H20.

 $Key\ words\ and\ phrases.$ Fock type space, norm equivalence, Littlewood-Paley formula, Lipschitz type condition.

The first author was financially supported by NRF-2020R1F1A1A0104860111 and the second author was financially supported by NRF-2021R1A2B5B03087097.

and find an equivalent mixed norm on $F^{p,q}_{\phi,t}(\mathbb{C}^n)$ in terms of a radial derivative. We then apply it to a Lipschitz type characterization of the space $F_{\phi,t}^{p,p}(\mathbb{C}^n)$.

Let dS be the surface measure on the unit sphere \mathbb{S}^n of \mathbb{C}^n with $S(\mathbb{S}^n) = 1$, and let the Lebesgue space $L^{p,q}_{\phi,t}(\mathbb{C}^n)$ consist of complex-valued measurable functions on \mathbb{C}^n , where

$$||f||_{p,q,\phi,t} = \left[\int_0^\infty M_q^p(r,f) \frac{r^{2n-1}e^{-p\phi(r)}}{(1+\phi'(r))^t} dr \right]^{1/p} < \infty,$$

and

$$M_q(r,f) = \left[\int_{\mathbb{S}^n} |f(r\zeta)|^q dS(\zeta) \right]^{1/q},$$

which is called the surface area integral mean of f. Let $H(\mathbb{C}^n)$ be the space of all entire functions on \mathbb{C}^n . We define Fock type space $F^{p,q}_{\phi,t}(\mathbb{C}^n)$ such that $F_{\phi,t}^{p,q}(\mathbb{C}^n) = L_{\phi,t}^{p,q}(\mathbb{C}^n) \cap H(\mathbb{C}^n)$. Now, we suggest Condition \mathcal{L} which is slightly different from the condition for a radial weight in [4].

Definition (Condition \mathcal{L}). Let $\phi:[0,\infty)\to\mathbb{R}^+$ be a twice continuously differentiable and increasing convex weight function. Let $C \in \mathbb{R}$. Then there exists $r_0 > 0$ such that

$$\phi'(r) \ge 1$$

for $r \geq r_0$ and

(2)
$$\lim_{r \to \infty} \frac{1}{r} \left(\frac{r}{\phi'(r)} \right)' = 0,$$

(3)
$$\lim_{r \to \infty} \frac{\phi'(r + \frac{C}{1 + \phi'(r)})}{\phi'(r)} = 1.$$

Remark 1.1. In this paper, we consider a convex weight function. In the case of a concave weight function, Lemma 2.3 and Theorem 1.5 are similarly proved.

Example 1.2. Functions satisfying Condition \mathcal{L} are as follows:

- $\phi(r) = r^{\alpha}$ for $\alpha \ge 1$.

- $\phi(r) = r$ for $\alpha \ge 1$. $\phi(r) = e^{\beta r}$ for $\beta > 0$. $\phi(r) = e^{e^r}$. $\phi(r) = e^r r^{\theta}$ for $\theta \ge 0$. $\phi(r) = e^r \log(1 + r)$. $\phi(r) = \int_0^r \frac{e^x}{x+1} dx$.

Given a function $f \in H(\mathbb{C}^n)$, we define radial derivative $\mathcal{R}f$ of f as follows:

$$\mathcal{R}f(z) = \sum_{j=1}^{n} z_j \frac{\partial f}{\partial z_j}(z).$$

Theorem 1.3. Let $0 < p, q < \infty$ and let $t \in \mathbb{R}$. If ϕ satisfies Condition \mathcal{L} , then

$$\int_0^\infty M_q^p(r,f) \frac{r^{2n-1} e^{-p\phi(r)}}{(1+\phi'(r))^t} dr$$

is equivalent to

$$|f(0)|^p + \int_0^\infty \frac{M_q^p(r, \mathcal{R}f)}{(1 + r\phi'(r))^p} \frac{r^{2n-1}e^{-p\phi(r)}}{(1 + \phi'(r))^t} dr$$

for all $f \in H(\mathbb{C}^n)$.

When t = 0, we have the same result in [1]. Note that when p = q, in polar coordinates,

$$\int_{\mathbb{C}^n} \left| f(z) e^{-\phi(|z|)} \right|^p \frac{dV(z)}{(1+\phi'(|z|))^t} = 2n \int_0^\infty M_p^p(r,f) \frac{r^{2n-1} e^{-p\phi(r)}}{(1+\phi'(r))^t} dr.$$

We define $dG_{p, \phi, t}$ as t-weighted ϕ -Gaussian measure on \mathbb{C}^n as follows:

$$dG_{p,\,\phi,\,t}(z) = C_{p,\,\phi,\,t} \, e^{-p\phi(|z|)} \, \frac{dV(z)}{(1+\phi'(|z|))^t},$$

where dV is the volume measure on \mathbb{C}^n and $C_{p, \phi, t}$ is the normalizing constant. Fock type space $F_{\phi, t}^{p, p}(\mathbb{C}^n)$ norm is defined as

$$||f||_{F_{\phi,t}^{p,p}}^p = C_{p,\,\phi,\,t} \int_{\mathbb{C}^n} \left| f(z)e^{-\phi(|z|)} \right|^p \frac{dV(z)}{(1+\phi'(|z|))^t}.$$

The complex gradient of f at z is defined as

$$\nabla f(z) = \left(\frac{\partial f}{\partial z_1}(z), \dots, \frac{\partial f}{\partial z_n}(z)\right).$$

Then the mixed norm equivalence in Theorem 1.3 induces the following results.

Corollary 1.4. Let $0 and <math>t \in \mathbb{R}$. If ϕ satisfies Condition \mathcal{L} , then the following norms

$$||f - f(0)||_{F_{\phi,t}^{p,p}}, \qquad \left\| \frac{\nabla f(z)}{1 + \phi'(|z|)} \right\|_{L^p(dG_{p,\phi,t})}$$

are comparable to each another for $f \in H(\mathbb{C}^n)$.

By using the norm equivalence in Corollary 1.4, we characterize the Fock type space $F_{\phi,t}^{p,p}(\mathbb{C}^n)$ with respect to the Lipschitz type condition as follows:

Theorem 1.5. Let $0 and <math>s, t \in \mathbb{R}$. If ϕ satisfies Condition \mathcal{L} , then the following statements are equivalent for entire functions f on \mathbb{C}^n :

(a)
$$f \in F_{\phi,t}^{p,p}(\mathbb{C}^n)$$
.

(b) There exists a nonnegative continuous function $g \in L^p(dG_{p,\phi,-sp+t})$ such that

$$\frac{|f(z) - f(w)|}{|z - w|} \le (1 + \phi'(|z|) + \phi'(|w|))^{1+s}(g(z) + g(w))$$

for each $z, w \in \mathbb{C}^n$ with $z \neq w$.

We use notation $X \lesssim Y$ or $Y \gtrsim X$, respectively, for nonnegative quantities X and Y to indicate $X \leq CY$ or $Y \leq CX$ for some inessential constant C > 0. Similarly, we use notation $X \approx Y$ if both $X \lesssim Y$ and $Y \lesssim X$ hold.

2. Preliminaries

The next lemma shows properties of a weight function ϕ from (2) of Condition \mathcal{L} .

Lemma 2.1 ([1], Lemma 2.3). Let ϕ be a function satisfying Condition \mathcal{L} . Then we have

(a)

$$\lim_{r \to \infty} \frac{1}{r\phi'(r)} = 0.$$

(b)

$$\lim_{r \to \infty} \frac{\phi''(r)}{(\phi'(r))^2} = 0.$$

The following lemma is derived from Lemma 2.1.

Lemma 2.2 ([1], Lemma 2.4). Let ϕ be a function satisfying Condition \mathcal{L} . We define a sequence $\{r_k\}_{k=-1}^{\infty}$ as

$$\phi(r_k) = k, \quad k \ge 0,$$

and $r_{-1} := 0$. Then we have the following:

(a.)

$$\lim_{k \to \infty} \frac{r_{k+1}}{r_k} = 1.$$

(b) For $\varepsilon > 0$, there exists $k_0 \in \mathbb{N}$ such that

$$\left(\frac{e^{\phi(y)}}{e^{\phi(x)}}\right)^{-\varepsilon} \leq \frac{\phi'(y)}{\phi'(x)} \leq \left(\frac{e^{\phi(y)}}{e^{\phi(x)}}\right)^{\varepsilon}$$

for all $r_k \leq x < y \leq r_{k+1}$ and for all $k \geq k_0$,

For $\delta > 0$, a ball $E_{\delta}(z)$ is defined by

(5)
$$E_{\delta}(z) = \left\{ w \in \mathbb{C}^n : |w - z| < \frac{\delta}{1 + \phi'(|z|)} \right\}.$$

We characterize some functions in terms of a weight function ϕ in $E_{\delta}(z)$.

Lemma 2.3. Let $\delta > 0$ and |z| = r for $z \in \mathbb{C}^n$. Then there exist $C_1, C_2 > 0$ and $r_0 > 0$ such that for $r \geq r_0$,

(6)
$$C_1^{-1} \le \frac{1 + \phi'(|w|)}{1 + \phi'(|z|)} \le C_1,$$

and

(7)
$$C_2^{-1} \le \frac{e^{\phi(|w|)}}{e^{\phi(|z|)}} \le C_2$$

for any $w \in E_{\delta}(z)$. In particular, the constants C_1 and C_2 are independent of z and w.

Proof. Let $w \in E_{\delta}(z)$. We assume that $z = r\zeta$ and $w = a\eta$ in \mathbb{C}^n , where $0 \le r, a < \infty$ and $\zeta, \eta \in \mathbb{S}^n$. Then we need to show that there exists C > 0 such that

$$C^{-1} \le \frac{\phi'(a)}{\phi'(r)} \le C$$

for

$$r - \frac{\delta}{1 + \phi'(r)} < a < r + \frac{\delta}{1 + \phi'(r)}.$$

Since a given weight ϕ is under Condition \mathcal{L} , it follows that

$$\frac{\phi'(r - \frac{\delta}{1 + \phi'(r)})}{\phi'(r)} \le \frac{\phi'(a)}{\phi'(r)} \le \frac{\phi'(r + \frac{\delta}{1 + \phi'(r)})}{\phi'(r)}.$$

Thus, there exists C > 0 such that

$$C^{-1} \le \frac{\phi'(a)}{\phi'(r)} \le C$$

for

$$r - \frac{\delta}{1 + \phi'(r)} < a < r + \frac{\delta}{1 + \phi'(r)},$$

and for all $r \ge r_0$ by (3). Hence, the inequality (6) is proved. Moreover, for a weight ϕ satisfying Condition \mathcal{L} , the mean value theorem yields

$$|\phi(r) - \phi(a)| = |r - a|\phi'(x)$$

for some

$$r - \frac{\delta}{1 + \phi'(r)} < x < r + \frac{\delta}{1 + \phi'(r)}.$$

From (5) and (6), it follows that

$$|\phi(r) - \phi(a)| \le \frac{\delta \phi'(x)}{1 + \phi'(r)}$$

 $< C_1 \delta,$

with the same constant C_1 in (6). Thus, we have

$$e^{-C_1\delta} \le \frac{e^{\phi(a)}}{e^{\phi(r)}} \le e^{C_1\delta}.$$

This gives (7), and the proof is complete.

The following two inequalities are required to obtain the mixed norm equivalence of an entire function and its radial derivative.

Lemma 2.4 ([5], Lemma 2.1). If $f \in H(\mathbb{C}^n)$, $0 < q < \infty$, then there is a constant C_q such that

$$M_q(r, \mathcal{R}f) \le C_q \frac{r}{\rho - r} M_q(\rho, f),$$

where $0 < r < \rho < \infty$.

Lemma 2.5 ([5], Lemma 2.2). If $f \in H(\mathbb{C}^n)$, $0 < q < \infty$ and $s = \min\{q, 1\}$, then there is a constant C such that

$$M_q^s(\rho,f) - M_q^s(r,f) \leq C \left(\frac{\rho-r}{r}\right)^s M_q^s(\rho,\mathcal{R}f),$$

where $0 < r < \rho < \infty$.

Lemma 2.6. Let $\{A_k\}_{k=0}^{\infty}$ be a sequence of complex numbers and $0 < \gamma < \infty$. Set

$$Q_1 = \sum_{k=0}^{\infty} |A_k|^{\gamma} r_k^{2n-1} (\phi'(r_k))^{-t-1} e^{-kp},$$

$$Q_2 = |A_0|^{\gamma} + \sum_{k=0}^{\infty} |A_{k+1} - A_k|^{\gamma} r_k^{2n-1} (\phi'(r_k))^{-t-1} e^{-kp}.$$

Then there is a positive constant C = C(p) independent of $\{A_k\}_{k=0}^{\infty}$ such that $C^{-1}Q_1 \leq Q_2 \leq CQ_1$.

Proof. We prove this substituting -t for Np of Lemma 2.5 in [1].

3. Equivalence of norms

We prove equivalence of mixed norms of an entire function and its radial derivative for a radial weight function ϕ under Condition \mathcal{L} .

Proposition 3.1. Let $0 < p, q < \infty$ and $t \in \mathbb{R}$. If ϕ satisfies Condition \mathcal{L} , then

$$\int_0^\infty M_q^p(r,f) \frac{r^{2n-1}e^{-p\phi(r)}}{(1+\phi'(r))^t} dr$$

is equivalent to

$$M_q^p(r_0, f) + \int_0^\infty \frac{M_q^p(r, \mathcal{R}f)}{(1 + r\phi'(r))^p} \frac{r^{2n-1}e^{-p\phi(r)}}{(1 + \phi'(r))^t} dr$$

for all $f \in H(\mathbb{C}^n)$.

Proof. Let $\{r_k\}_{k=-1}^{\infty}$ be the sequence defined by (4). First, we suppose that

$$\int_{0}^{\infty} M_{q}^{p}(r, f) \frac{r^{2n-1} e^{-p\phi(r)}}{(1 + \phi'(r))^{t}} dr < \infty.$$

We note (1). Then

$$\begin{split} L := & \int_0^\infty M_q^p(r,f) \frac{r^{2n-1} e^{-p\phi(r)}}{(1+\phi'(r))^t} dr \\ \approx & \sum_{k=0}^\infty \int_{r_k}^{r_{k+1}} M_q^p(r,f) \frac{r^{2n-1} e^{-p\phi(r)}}{(\phi'(r))^t} dr. \end{split}$$

The fact that $M_q^p(r,\mathcal{R}f)$ and r_k^{2n-1} are monotonically increasing yields

$$L \gtrsim \sum_{k=0}^{\infty} M_q^p(r_k, f) r_k^{2n-1} \int_{r_k}^{r_{k+1}} \frac{e^{-p\phi(r)}}{(\phi'(r))^t} dr.$$

By the mean value theorem for definite integrals, we have

(8)
$$\int_{r_k}^{r_{k+1}} \frac{e^{-p\phi(r)}}{(\phi'(r))^t} dr = \frac{1}{-p(\phi'(x_k))^{t+1}} \int_{r_k}^{r_{k+1}} (-p\phi'(r))e^{-p\phi(r)} dr$$

for some $r_k < x_k < r_{k+1}$. The definition of a function $\phi(r)$ yields

(9)
$$\int_{r_k}^{r_{k+1}} (-p\phi'(r))e^{-p\phi(r)}dr = e^{-kp}(e^{-p} - 1).$$

By (6), we know

$$L \gtrsim \sum_{k=0}^{\infty} M_q^p(r_k, f) \frac{r_k^{2n-1} e^{-kp}}{(\phi'(r_k))^{t+1}}.$$

In addition, based on Lemma 2.1(a), we have $r\phi'(r) \to \infty$ as $r \to \infty$. Thus, we may assume $r\phi'(r) \ge 1$ for all $r \ge r_0$. It follows that

$$R := \int_0^\infty \frac{M_q^p(r, \mathcal{R}f)}{(1 + r\phi'(r))^p} \frac{r^{2n-1}e^{-p\phi(r)}}{(1 + \phi'(r))^t} dr$$

$$\approx \sum_{k=0}^\infty \int_{r_k}^{r_{k+1}} \frac{M_q^p(r, \mathcal{R}f)}{(r\phi'(r))^p} \frac{r^{2n-1}e^{-p\phi(r)}}{(\phi'(r))^t} dr.$$

By considering the monotonicity of $M_q^p(r,f)$ and r_k^{2n-1} again, we have

$$R \lesssim \sum_{k=0}^{\infty} M_q^p(r_{k+1}, \mathcal{R}f) \frac{r_{k+1}^{2n-1}}{r_k^p} \int_{r_k}^{r_{k+1}} \frac{e^{-p\phi(r)}}{(\phi'(r))^{p+t}} dr.$$

By applying the mean value theorem for finite integrals and (9),

$$\int_{r_k}^{r_{k+1}} \frac{e^{-p\phi(r)}}{(\phi'(r))^{p+t}} dr = \frac{e^{-kp}(e^{-p}-1)}{-p(\phi'(y_k))^{p+t+1}}$$

for some $r_k < y_k < r_{k+1}$. Hence, we get

$$R \lesssim \frac{e^{-p}-1}{-p} \sum_{k=0}^{\infty} M_q^p(r_{k+1}, \mathcal{R}f) \frac{r_{k+1}^{2n-1}}{r_k^p} \frac{e^{-kp}}{(\phi'(y_k))^{p+t+1}}.$$

By Lemma 2.4, we obtain

$$R \lesssim \sum_{k=0}^{\infty} M_q^p(r_{k+2},f) \left(\frac{r_{k+1}}{r_{k+2}-r_{k+1}}\right)^p \frac{r_{k+1}^{2n-1}}{r_k^p} \frac{e^{-kp}}{(\phi'(y_k))^{p+t+1}}.$$

Moreover, both the definition of a function $\phi(r)$ and the mean value theorem

(10)
$$\frac{1}{r_{k+1} - r_k} = \frac{\phi(r_{k+1}) - \phi(r_k)}{r_{k+1} - r_k} = \phi'(z_k)$$

for some $r_k < z_k < r_{k+1}$. Therefore, it

$$R \lesssim \sum_{k=0}^{\infty} M_q^p(r_{k+2}, f) (r_{k+1} \phi'(z_{k+1}))^p \frac{r_{k+1}^{2n-1}}{r_k^p} \frac{e^{-kp}}{(\phi'(y_k))^{p+t+1}}.$$

Note that by Lemma 2.2, there exists C > 0 such that

$$C^{-1} \le \frac{r_{k+1}\phi'(z_{k+1})}{r_k\phi'(y_k)} \le C$$

for
$$r_k < y_k < r_{k+1} < z_{k+1} < r_{k+2}$$
. Again, by Lemma 2.2, we have
$$R \lesssim \sum_{k=0}^{\infty} M_q^p(r_{k+2}, f) \frac{r_{k+2}^{2n-1} e^{-(k+2)p}}{(\phi'(r_{k+2}))^{t+1}}.$$

Thus, we obtain

$$M_q^p(r_0, f) + R \lesssim L.$$

Now, we assume that

$$R = \int_0^\infty \frac{M_q^p(r,\mathcal{R}f)}{(1+r\phi'(r))^p} \frac{r^{2n-1}}{(1+\phi'(r))^t} dr < \infty.$$

Since $M_q^p(r, \mathcal{R}f)$ and r_k^{2n-1} are monotonically increasing, we have

$$R \gtrsim \sum_{k=0}^{\infty} M_q^p(r_k, \mathcal{R}f) \frac{r_k^{2n-1}}{r_{k+1}^p} \int_{r_k}^{r_{k+1}} \frac{e^{-p\phi(r)}}{(\phi'(r))^{p+t}} dr.$$

Then the mean value theorem for definite integrals and (9) give

$$R \gtrsim \sum_{k=0}^{\infty} M_q^p(r_k, \mathcal{R}f) \frac{r_k^{2n-1}}{r_{k+1}^p} \frac{e^{-kp}}{(\phi'(y_k))^{p+t+1}}$$

for some $r_k < y_k < r_{k+1}$. Lemma 2.2 yield

$$R \gtrsim \sum_{k=0}^{\infty} M_q^p(r_k, \mathcal{R}f) \frac{r_k^{2n-p-1} e^{-kp}}{(\phi'(r_k))^{p+t+1}}.$$

Furthermore, the estimate by the mean value theorem for definite integrals as in (8) and the monotonicity of $M_q^p(r, f)$ and r_k^{2n-1} yield

$$L \lesssim \sum_{k=0}^{\infty} M_q^p(r_{k+1}, f) r_{k+1}^{2n-1} \frac{1}{-p(\phi'(x_k))^{t+1}} \int_{r_k}^{r_{k+1}} (-p\phi'(r)) e^{-p\phi(r)} dr$$

for some $r_k < x_k < r_{k+1}$. By applying (9) and Lemma 2.2(b), we obtain

$$L \lesssim \sum_{k=1}^{\infty} M_q^p(r_k, f) \frac{r_k^{2n-1} e^{-kp}}{(\phi'(r_k))^{t+1}}.$$

To apply Lemma 2.5, we consider two cases: $0 < q \le 1$ and q > 1. First, let $0 < q \le 1$, $\gamma = p/q$, and $A_k = M_q^q(r_k, f)$. Then Lemma 2.6 yields

$$L \lesssim M_q^p(r_0, f) + \sum_{k=1}^{\infty} \left[M_q^q(r_{k+1}, f) - M_q^q(r_k, f) \right]^{\frac{p}{q}} \frac{r_k^{2n-1} e^{-kp}}{(\phi'(r_k))^{t+1}}.$$

By Lemma 2.5, we have

$$L \lesssim M_q^p(r_0, f) + \sum_{k=1}^{\infty} \left[\left(\frac{r_{k+1} - r_k}{r_k} \right)^q M_q^q(r_{k+1}, \mathcal{R}f) \right]^{\frac{p}{q}} \frac{r_k^{2n-1} e^{-kp}}{(\phi'(r_k))^{t+1}}.$$

From (10), we obtain

$$L \lesssim M_q^p(r_0, f) + \sum_{k=1}^{\infty} (\phi'(z_k))^{-p} M_q^p(r_{k+1}, \mathcal{R}f) \frac{r_k^{2n-p-1} e^{-kp}}{(\phi'(r_k))^{t+1}}$$

for some $r_k < z_k < r_{k+1}$. It follows from Lemma 2.2 that

$$L \lesssim M_q^p(r_0, f) + R.$$

Let q > 1, $\gamma = p$, and $A_k = M_q(r_k, f)$. Then the proof is similar to the case where $0 < q \le 1$; thus, we complete the proof.

By applying the open mapping theorem as Remark 1 in [1], we prove Theorem 1.3. When p=q, Theorem 1.3 is represented by Corollary 3.2.

Corollary 3.2. Let $0 and <math>t \in \mathbb{R}$. If ϕ satisfies Condition \mathcal{L} , then

$$\int_{\mathbb{C}^n} |f(z)|^p dG_{p,\,\phi,\,t}(z) \approx |f(0)|^p + \int_{\mathbb{C}^n} \frac{|\mathcal{R}f(z)|^p}{(1+|z|\phi'(|z|))^p} dG_{p,\,\phi,\,t}(z)$$
 for $f \in H(\mathbb{C}^n)$.

We denote a multi-index $M=(m_1,\ldots,m_n)$, which is an n-tuple of nonnegative integers, we use notation $|M|=m_1+\cdots+m_n$ and $\partial^M=\partial_1^{m_1}\cdots\partial_n^{m_n}$, where ∂_j denotes partial differentiation with respect to the j-th component.

Lemma 3.3. Let $0 , <math>t \in \mathbb{R}$, and $\delta > 0$. Given a multi-index M, there exists a positive constant C such that

$$\frac{\left|\partial^{M} g(z)\right|^{p} e^{-p\phi(|z|)}}{(1+\phi'(|z|))^{p|M|+2n+t}} \leq C \int_{E_{\delta}(z)} |g(w)|^{p} \frac{e^{-p\phi(|w|)} \, dV(w)}{(1+\phi'(|w|))^{t}}, \quad z \in \mathbb{C}^{n},$$

for $g \in H(\mathbb{C}^n)$.

Proof. Let $0 , <math>g \in H(\mathbb{C}^n)$, and $z \in \mathbb{C}^n$. By subharmonicity, we have

$$\begin{split} |g(z)|^p & \leq \frac{1}{Vol[E_{\delta}(z)]} \int_{E_{\delta}(z)} |g(w)|^p \, dV(w) \\ & = \frac{(1 + \phi'(|z|))^{2n}}{\omega_n \delta^{2n}} \int_{E_{\delta}(z)} |g(w)|^p \, dV(w), \end{split}$$

where ω_n is the volume of the unit ball of \mathbb{C}^n . Hence, the Cauchy estimate over a ball $E_{\delta/2}(z)$ implies that

$$|\partial^{M} g(z)|^{p} \le C(1 + \phi'(|z|))^{p|M|+2n} \int_{E_{\delta}(z)} |g(w)|^{p} dV(w)$$

for some C > 0. We apply Lemma 2.3. This completes the proof.

Lemma 3.4. Fock type space $F_{\phi,t}^{p,q}(\mathbb{C}^n)$ contains constant functions.

Proof. It is sufficient to prove that there exists $r_0 > 0$ such that

(11)
$$\int_{r_0}^{\infty} \frac{s^{2n-1}e^{-p\phi(s)}}{(\phi'(s))^t} ds < \infty$$

for a weight function ϕ under Condition \mathcal{L} . To prove (11), we note that for $r \geq 1$,

$$\int_{r_0}^r \frac{s^{2n-1}e^{-p\phi(s)}}{(\phi'(s))^t} ds = \left[\frac{s^{2n-1}e^{-p\phi(s)}}{-p(\phi'(s))^{t+1}}\right]_{r_0}^r + \int_{r_0}^r \left(\frac{s^{2n-1}}{p(\phi'(s))^{t+1}}\right)' e^{-p\phi(s)} ds$$
(12)
$$\leq \frac{r_0^{2n-1}e^{-p\phi(r_0)}}{p(\phi'(r_0))^{t+1}} + \beta \int_{r_0}^r \frac{s^{2n-1}e^{-p\phi(s)}}{(\phi'(s))^t} ds$$

for some $-1 < \beta < 1$. For the above inequality, we claim that

$$\left(\frac{s^{2n-1}}{p(\phi'(s))^{t+1}}\right)' = \frac{s^{2n-1}}{(\phi'(s))^t} \left[\frac{2n-1}{p} \frac{1}{s\phi'(s)} - \frac{t+1}{p} \frac{\phi''(s)}{(\phi'(s))^2}\right]$$

$$\leq \beta \frac{s^{2n-1}}{(\phi'(s))^t}$$

for some $-1 < \beta < 1$ as follows: By Lemma 2.1(a), we consider that for any sufficiently small $\epsilon_1 > 0$, there exists r_0 such that

$$(13) -\epsilon_1 < \frac{1}{s\phi'(s)} < \epsilon_1$$

for all $s > r_0$. Moreover, we have

$$\frac{1}{s} \left(\frac{s}{\phi'(s)} \right)' = \frac{1}{s\phi'(s)} - \frac{\phi''(s)}{(\phi'(s))^2}.$$

Hence, (2) for Condition \mathcal{L} implies that for any sufficiently small $\epsilon_2 > 0$, there exists r_0 such that

(14)
$$\frac{1}{s\phi'(s)} - \epsilon_2 < \frac{\phi''(s)}{(\phi'(s))^2} < \frac{1}{s\phi'(s)} + \epsilon_2$$

for all $s > r_0$. Together with (13) and (14), we consider ϵ_1 and ϵ_2 that satisfy the following inequalities:

$$\left| \frac{2n-1}{p} \frac{1}{s\phi'(s)} - \frac{t+1}{p} \frac{\phi''(s)}{(\phi'(s))^2} \right| \le \frac{2n-1}{p} \frac{1}{s\phi'(s)} + \frac{|t+1|}{p} \frac{\phi''(s)}{(\phi'(s))^2}$$

$$< \frac{2n-1}{p} \frac{1}{s\phi'(s)} + \frac{|t+1|}{p} \left(\frac{1}{s\phi'(s)} + \epsilon_2 \right)$$

$$< \frac{2n-1+|t+1|}{p} \epsilon_1 + \frac{|t+1|}{p} \epsilon_2$$

$$< 1.$$

Therefore, we prove that there exists r_0 such that

$$\left| \frac{2n-1}{p} \frac{1}{s\phi'(s)} - \frac{t+1}{p} \frac{\phi''(s)}{(\phi'(s))^2} \right| < 1$$

for any $s > r_0$. Hence, the inequality in (12) holds.

As r approaches infinity in (12), we know

$$\int_{r_0}^{\infty} \frac{s^{2n-1}}{(\phi'(s))^t} e^{-p\phi(s)} ds \le \frac{1}{1-\beta} \frac{r_0^{2n-1} e^{-p\phi(r_0)}}{p(\phi'(r_0))^{t+1}}$$

for some $-1 < \beta < 1$. Hence, it follows that

$$\int_0^\infty \frac{r^{2n-1}e^{-p\phi(r)}}{(1+\phi'(r))^t}dr < \infty.$$

Thus, the proof is complete.

Corollary 3.5. Let $0 and <math>t \in \mathbb{R}$. Then the following norms

$$||f - f(0)||_{F_{\phi, t}^{p, p}}, \quad \left\| \frac{\mathcal{R}f(z)}{1 + |z|\phi'(|z|)} \right\|_{L^{p}(dG_{p, \phi, t})}, \quad \left\| \frac{\nabla f(z)}{1 + \phi'(|z|)} \right\|_{L^{p}(dG_{p, \phi, t})}$$

are comparable to one another for $f \in H(\mathbb{C}^n)$.

Proof. First, we claim that the $F_{\phi,t}^{p,p}(\mathbb{C}^n)$ -norm of f-f(0) is equivalent to the norm of the product of its radial derivative and $\frac{1}{1+|z|\phi'(|z|)}$. By Lemma 3.4, we have that constant functions are contained in $F_{\phi,t}^{p,p}(\mathbb{C}^n)$. By applying Theorem 1.3 to f-f(0), we obtain

$$\int_{\mathbb{C}^n} |f(z) - f(0)|^p \, \frac{e^{-p\phi(|z|)} dV(z)}{(1 + \phi'(|z|))^t} \approx \int_{\mathbb{C}^n} \frac{|\mathcal{R}f(z)|^p}{(1 + |z|\phi'(|z|))^p} \, \frac{e^{-p\phi(|z|)} dV(z)}{(1 + \phi'(|z|))^t}.$$

Second, we prove that $F_{\phi,t}^{p,p}(\mathbb{C}^n)$ -norm of f-f(0) is equivalent to the norm of the product of its complex gradient ∇f and $\frac{1}{1+\phi'(|z|)}$. Note that $|\mathcal{R}f(z)| \leq |z||\nabla f(z)|$. Hence, we have

$$||f - f(0)||_{F_{\phi,t}^{p,p}} \lesssim \left\| \frac{\nabla f(z)}{1 + \phi'(|z|)} \right\|_{L^p(dG_{p,\phi,t})}.$$

Furthermore, Lemma 3.3 yields

$$\frac{|\nabla f(z)|^p}{(1+\phi'(|z|))^p} \lesssim (1+\phi'(|z|))^{2n} \int_{E_\delta(z)} |f(w)-f(0)|^p \, dV(w).$$

Let $\delta > 0$ and $\delta_1 := 2C_1\delta$, where C_1 is the same constant as in Lemma 2.3. Then it follows $E_{\delta}(z) \subset E_{\delta_1}(w)$ for $w \in E_{\delta}(z)$ since we have

(15)
$$\frac{\delta}{1 + \phi'(|z|)} < \frac{C_1 \delta}{1 + \phi'(|w|)}.$$

By integrating both sides of the above inequality against $dG_{p, \phi, t}$ and applying Fubini's theorem, we have

$$\left\| \frac{\nabla f(z)}{1 + \phi'(|z|)} \right\|_{L^p(dG_{p,\phi,t})}^p \\ \lesssim \int_{\mathbb{C}^n} \int_{E_{\delta_1}(w)} |f(w) - f(0)|^p (1 + \phi'(|z|))^{2n} \frac{e^{-p\phi(|z|)} dV(z)}{(1 + \phi'(|z|))^t} dV(w).$$

Lemma 2.3 yields

$$\left\| \frac{\nabla f(z)}{1 + \phi'(|z|)} \right\|_{L^p(dG_{p,\,\phi,\,t})}^p \lesssim \|f - f(0)\|_{F_{\phi,\,t}^{p,p}}^p.$$

This proves the desired result

4. Lipschitz type characterization

Proof of Theorem 1.5. First, we assume that (b) holds. By fixing z and taking limits $w \to z$ along the directions parallel to the coordinate axes, we have

$$|\partial_i f(z)| \lesssim (1 + \phi'(|z|))^{1+s} g(z)$$

for each j. Thus, we get

$$\frac{|\nabla f(z)|}{1+\phi'(|z|)}\lesssim (1+\phi'(|z|))^s g(z),\quad z\in\mathbb{C}^n,$$

and hence, we obtain

$$\int_{\mathbb{C}^n} |\nabla f(z)|^p \frac{e^{-p\phi(|z|)} dV(z)}{(1+\phi'(|z|))^{p+t}} \lesssim \int_{\mathbb{C}^n} |g(z)|^p \, \frac{e^{-p\phi(|z|)} dV(z)}{(1+\phi'(|z|))^{-sp+t}}.$$

By Corollary 3.5, we have $g(z) \in L^p(G_{p,\phi,-sp+t})$, and thus $f \in F^{p,p}_{\phi,t}(\mathbb{C}^n)$. Second, we assume that (a) holds. Fix any $\delta > 0$. We set

$$\Omega_{\delta} := \{(z, w) : |w - z|(1 + \phi'(|z|) + \phi'(|w|)) < \delta\}.$$

Let $(z, w) \in \Omega_{\delta}$. Then we have $w \in E_{\delta}(z)$ and

$$1 + \phi'(|z|) + \phi'(|w|) \approx 1 + \phi'(|z|),$$

by Lemma 2.3. From the fundamental theorem of calculus, it follows

$$|f(z) - f(w)| \le |z - w| \int_0^1 |\nabla f(\rho z + (1 - \rho)w)| d\rho.$$

A line $\rho z + (1 - \rho)w$ exists in $E_{\delta}(z)$ and it yields

(16)
$$|f(z) - f(w)| \le |z - w| \sup_{\zeta \in E_{\delta}(z)} |\nabla f(\zeta)|.$$

We note that

(17)
$$|\nabla f(\zeta)| \approx (1 + \phi'(|z|) + \phi'(|w|))^{1+s} \frac{|\nabla f(\zeta)|}{(1 + \phi'(|\zeta|))^{1+s}}$$

for $\zeta \in E_{\delta}(z)$. Let

$$h_s(z) := \sup_{\zeta \in E_\delta(z)} \frac{|\nabla f(\zeta)|}{(1+\phi'(|\zeta|))^{1+s}}.$$

By using (16) and (17), we obtain

$$|f(z) - f(w)| \le |z - w|(1 + \phi'(|z|) + \phi'(|w|))^{1+s}(h_s(z) + h_s(w))$$

for $(z, w) \in \Omega_{\delta}$.

Next, let $(z, w) \notin \Omega_{\delta}$. Then $|z - w|(1 + \phi'(|z|) + \phi'(|w|)) \ge \delta$. Hence, it follows

$$|f(z) - f(w)| \lesssim \frac{|z - w|(1 + \phi'(|z|) + \phi'(|w|))^{1+s}}{\delta} \left(\frac{|f(z)|}{(1 + \phi'(|z|))^s} + \frac{|f(w)|}{(1 + \phi'(|w|))^s}\right)$$

for $s \in \mathbb{R}$. Let

$$g(z) := h_s(z) + \frac{|f(z)|}{\delta(1 + \phi'(|z|))^s}$$

for $z \in \mathbb{C}^n$. Then we have

$$|f(z) - f(w)| \lesssim |z - w|(1 + \phi'(|z|) + \phi'(|w|))^{1+s}(g(z) + g(w))$$

for each $z,w\in\mathbb{C}^n$ with $z\neq w$. Note that a function g(z) is continuous on \mathbb{C}^n . However, it remains to prove that the function g(z) is in $L^p(G_{p,\phi,-sp+t})$. Since $\frac{|f(z)|}{\delta(1+\phi'(|z|))^s}$ belongs to $L^p(G_{p,\phi,-sp+t})$ for $f\in F^{p,p}_{\phi,t}(\mathbb{C}^n)$, we claim that h_s exists in $L^p(G_{p,\phi,-sp+t})$. For $\zeta\in E_\delta(z)$, we have $E_{\delta_1}(\zeta)\subset E_{\delta_2}(z)$ by (15), where $\delta_1=2C_1\delta$ and $\delta_2=2C_1\delta_1$. From Lemma 3.3 and (6), we have

$$\frac{|\nabla f(\zeta)|^p}{(1+\phi'(|\zeta|))^{(1+s)p}} \lesssim (1+\phi'(|z|))^{2n-sp} \int_{E_{\delta_2}(z)} |f(w)|^p dV(w).$$

By taking the supremum over $\zeta \in E_{\delta}(z)$, we get

$$|h_s(z)|^p \lesssim (1 + \phi'(|z|))^{2n-sp} \int_{E_{\delta_2}(z)} |f(w)|^p dV(w)$$

for all $z \in \mathbb{C}^n$. Let $\delta_3 = 2C_1\delta_2$. By integrating both sides of the above inequality against the measure $dG_{p, \phi, -sp+t}(z)$ and applying Fubini's theorem, we obtain

$$||h_s||_{L^p(G_{p,\phi,-sp+t})}^p \lesssim \int_{\mathbb{C}^n} \int_{\mathbb{C}^n} (1+\phi'(|z|))^{2n} |f(w)|^p \chi_{E_{\delta_2}(z)}(w) \frac{e^{-p\phi(|z|)} dV(z)}{(1+\phi'(|z|))^t} dV(w),$$

where χ denotes the characteristic function in its subscripted set. For $z \in E_{\delta_3}(w)$, we apply Lemma 2.3, and it yields

$$||h_s||_{L^p(G_{p,\phi,-sp+t})}^p \lesssim \int_{\mathbb{C}^n} |f(w)|^p (1+\phi'(|w|))^{2n} \frac{\omega_n \delta_3^{2n}}{(1+\phi'(|w|))^{2n}} \frac{e^{-p\phi(|w|)} dV(w)}{(1+\phi'(|w|))^t} \\ \lesssim ||f||_{F^{p,p}_{\phi,t}}^p.$$

Thus, the proof is completed.

References

- H. R. Cho, J. M. Ha, and H.-W. Lee, A Sobolev norm equivalence on Fock-type spaces with a mixed norm, Complex Var. Elliptic Equ. 65 (2020), no. 6, 986-1000. https://doi.org/10.1080/17476933.2019.1641494
- [2] H. R. Cho, J. M. Ha, and K. Nam, Characterizations for the Fock-type spaces, Bull. Korean Math. Soc. 56 (2019), no. 3, 745-756. https://doi.org/10.4134/BKMS.b180540
- B. R. Choe and K. Nam, New characterizations for the weighted Fock spaces, Complex Anal. Oper. Theory 13 (2019), no. 6, 2671-2686. https://doi.org/10.1007/s11785-018-0850-1
- [4] O. Constantin and J. Peláez, Integral operators, embedding theorems and a Littlewood-Paley formula on weighted Fock spaces, J. Geom. Anal. 26 (2016), no. 2, 1109–1154. https://doi.org/10.1007/s12220-015-9585-7
- [5] J. M. Ha, H. R. Cho, and H.-W. Lee, A norm equivalence for the mixed norm of Fock type, Complex Var. Elliptic Equ. 61 (2016), no. 12, 1644–1655. https://doi.org/10. 1080/17476933.2016.1197916
- [6] S. Li, H. Wulan, R. Zhao, and K. Zhu, A characterisation of Bergman spaces on the unit ball of Cⁿ, Glasg. Math. J. 51 (2009), no. 2, 315–330. https://doi.org/10.1017/ S0017089509004996
- [7] S. Li, H. Wulan, and K. Zhu, A characterization of Bergman spaces on the unit ball of \(\mathbb{C}^n\). II, Canad. Math. Bull. **55** (2012), no. 1, 146-152. https://doi.org/10.4153/CMB-2011-047-6
- [8] M. Pavlović and J. A. Peláez, Weighted integrals of higher order derivatives of analytic functions, Acta Sci. Math. (Szeged) 72 (2006), no. 1-2, 73-93.
- [9] M. Pavlović and J. A. Peláez, An equivalence for weighted integrals of an analytic function and its derivative, Math. Nachr. 281 (2008), no. 11, 1612-1623. https://doi.org/10.1002/mana.200510701
- [10] H. Wulan and K. Zhu, Lipschitz type characterizations for Bergman spaces, Canad. Math. Bull. 52 (2009), no. 4, 613–626. https://doi.org/10.4153/CMB-2009-060-6

HONG RAE CHO
DEPARTMENT OF MATHEMATICS
PUSAN NATIONAL UNIVERSITY
PUSAN 46241, KOREA

Email address: chohr@pusan.ac.kr
JEONG MIN HA
DEPARTMENT OF MATHEMATICS

Pusan National University Pusan 46241, Korea

 $Email\ address{\rm : jm.ha@pusan.ac.kr}$