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LIPSCHITZ TYPE CHARACTERIZATION OF
FOCK TYPE SPACES

HonG RAE CHO AND JEONG MIN Ha

ABSTRACT. For setting a general weight function on n dimensional com-
plex space C”, we expand the classical Fock space. We define Fock type
space Fg:g(@") of entire functions with a mixed norm, where 0 < p, ¢ < oo
and t € R and prove that the mixed norm of an entire function is equiv-
alent to the mixed norm of its radial derivative on Fg:g(@”). As a result

of this application, the space Fg’f (C™) is especially characterized by a
Lipschitz type condition.

1. Introduction

Equivalent norms of an analytic function and its derivative have been ex-
tensively proved. It is known as a Littlewood-Paley formula, which is useful
to analyze an analytic function space in the study of questions related to a
derivative. In [8] and [9], mixed norm equivalence for an analytic function and
its higher order derivative and mixed norm equivalence for an analytic func-
tion and derivative on the unit disc are proved, respectively. In [4], equivalence
of mixed norms of an entire function and its derivative on a weighted Fock
space on complex plane C is researched and Condition £ for a weight function
class is introduced. A Littlewood-Paley formula plays a key role in the proof
of boundedness and compactness of an integral operator such as Volterra type
operator. In [1] and [5], it is verified that two mixed norms of an entire function
and its radial derivative are equivalent on n dimensional complex space C". In
addition, research has been conducted on Lipschitz type characterization for
the Bergman space with a standard weight in terms of the Euclidean, hyper-
bolic, and pseudohyperbolic metrics on the unit disc in [10]. These results are
generalized to the unit ball of C™ in [6] and [7]. Lipschitz type characterization
of the classical and weighted Fock spaces on C™ have been proved in [2] and [3],
respectively. For positive p, ¢, and real ¢, we define Fock type space F}’/(C")
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and find an equivalent mixed norm on F 5 /(C™) in terms of a radial derivative.
We then apply it to a Lipschitz type characterization of the space F 5,’5 (C™).

Let dS be the surface measure on the unit sphere S™ of C* with S(S"”) =1,

and let the Lebesgue space Lgﬁ(@") consist of complex-valued measurable

functions on C", where

oo v ,],.2n7167p¢>(r) J 1/p
= s —_— < 5
I fllp,q.0.t {/0 (1, f) 1+ ¢/ (r)t r} o0

and

Sn

)= | [ 1o asio)] "

which is called the surface area integral mean of f. Let H(C™) be the space
of all entire functions on C". We define Fock type space F’/(C") such that
FPJ(CY) = LyH(C™) N H(C™). Now, we suggest Condition £ which is slightly
different from the condition for a radial weight in [4].

Definition (Condition £). Let ¢ : [0,00) — R be a twice continuously differ-
entiable and increasing convex weight function. Let C € R. Then there exists
ro > 0 such that

(1) ¢'(r) =1

for r > r¢ and

1 r !
2 lim — | —— ) =0
. i 2 (57) o
¢ (r+ w5)
(3) lim —— 1)’
r—oo @'(r)
Remark 1.1. In this paper, we consider a convex weight function. In the case of
a concave weight function, Lemma 2.3 and Theorem 1.5 are similarly proved.

=1.

Example 1.2. Functions satisfying Condition £ are as follows:

e o(r) =r*for a > 1.
o ¢(r)=¢e"for >0
o o(r) =e.

e ¢(r) =e"r? for 6 > 0.
o o(r)=¢e" logz(l +r)

o o(r)=J; rde
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Theorem 1.3. Let 0 < p,q < oo and let t € R. If ¢ satisfies Condition L,

then
ooMp T2n 1 —p¢(T)d
[ e D

18 equivalent to
b [T MERE) prterot)
£(0)] +/O (AT +rd(r)) 1+ ¢'(r) .

for all f € H(C™).

When t = 0, we have the same result in [1]. Note that when p = ¢, in polar

coordinates,
A r2n—1o—po(r)
. Tre =, RN T
We define dG), 4,+ as t-weighted ¢-Gaussian measure on C™ as follows:
dV (z)
1+ (Iz))

where dV is the volume measure on C" and C), ¢, is the normalizing constant.
Fock type space [;"}(C") norm is defined as

f(z)€—¢(\2\)

Gy, g,1(2) = Cp, g, e 72D

i Ve
gy = Crvos [ [1(20e @+ (D)

The complex gradient of f at z is defined as

Vi = (g6 g o).

Then the mixed norm equivalence in Theorem 1.3 induces the following results.

Corollary 1.4. Let 0 < p < oo andt € R. If ¢ satisfies Condition L, then the
following norms

I = 1Oz |

14 ¢/(|2])

are comparable to each another for f € H(C™).

LP(dGp, ¢, 1)

By using the norm equivalence in Corollary 1.4, we characterize the Fock
type space F g’f (C™) with respect to the Lipschitz type condition as follows:

Theorem 1.5. Let 0 < p < oo and s,t € R. If ¢ satisfies Condition L, then
the following statements are equivalent for entire functions f on C™:

(a) feFpL(Cm).
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(b) There exists a nonnegative continuous function g € LP(dGp, ¢, —sp+t)

such that
w < (1+ ¢/(J21) + &' (W) (g(2) + g(w)

for each z,w € C™ with z # w.

We use notation X <Y or Y 2 X, respectively, for nonnegative quantities
X and Y to indicate X < CY or Y < CX for some inessential constant C' > 0.
Similarly, we use notation X ~ Y if both X <Y and ¥ < X hold.

2. Preliminaries

The next lemma shows properties of a weight function ¢ from (2) of Condi-
tion L.

Lemma 2.1 ([1], Lemma 2.3). Let ¢ be a function satisfying Condition L.
Then we have

(a)

R

dn e T
(b)

lim 20
r—oo (¢/(r))?

The following lemma is derived from Lemma 2.1.

Lemma 2.2 ([1], Lemma 2.4). Let ¢ be a function satisfying Condition L. We
define a sequence {ry}7>_, as
(4) o(re) =k, k=0,
and r_y := 0. Then we have the following:
(a)

. Tk+1
lim 2L — 1.

k—oo Tk
(b) Fore >0, there exists ko € N such that

dy)\ ¢ / d(y)\ ©
e AN
@ ) = (a) = \et@
forallry, <x <y <riy1 and for all k > ko,
For § > 0, a ball Es(z) is defined by

(5) Ea(z):{wEC”:|w—z|<1+;(|z)}.

We characterize some functions in terms of a weight function ¢ in Fs(z).
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Lemma 2.3. Let § > 0 and |z| = r for z € C". Then there exist C1,Cs > 0
and ro > 0 such that for r > rg,

_1_ L+ (Jw))
6 cl< —— 7 < 0
) U T <
and
o(luw)
e
Q G = oy = O

for any w € Es(z). In particular, the constants Cy and Co are independent of
z and w.

Proof. Let w € Es(z). We assume that z = r{ and w = an in C", where
0 <ra<ooand (,n €S Then we need to show that there exists C' > 0
such that

for

] )
r————<a<r+-———.

14 ¢/(r) 14 ¢'(r)

Since a given weight ¢ is under Condition £, it follows that

V- ) _ ¢ _ Y0t mm)

T R 5 R
Thus, there exists C' > 0 such that
1 d(a)
o1 c
= 9 S
for
A B

and for all > rg by (3). Hence, the inequality (6) is proved. Moreover, for a
weight ¢ satisfying Condition £, the mean value theorem yields

|6(r) = ¢(a)| = Ir — al¢/ (2)

for some
R
) ST T a0y
From (5) and (6), it follows that
6’ ()
|(;5(7“) - ¢(a)| < m

S 0157
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with the same constant C in (6). Thus, we have

#(a)
-C18 o € C1o
¢ e¢(7') S € ’
This gives (7), and the proof is complete. O

The following two inequalities are required to obtain the mixed norm equiv-
alence of an entire function and its radial derivative.

Lemma 2.4 ([5], Lemma 2.1). If f € H(C"), 0 < ¢ < oo, then there is a
constant Cy such that

My(r, Rf) < Cyy Mylp, ).

where 0 < r < p < oo.

Lemma 2.5 ([5], Lemma 2.2). If f € H(C"), 0 < ¢ < 00 and s = min{g, 1},
then there is a constant C' such that

M) - 113000 < € (P0) MR

where 0 < r < p < 00.

Lemma 2.6. Let {A,}?2, be a sequence of complex numbers and 0 < vy < 0.
Set

Qu =Y 1A 1@ ) e,
k=0

Q2 = [Ao|” + Z | A1 — A "¢ (re)) " e
k=0
Then there is a positive constant C = C(p) independent of { A}, such that
CTlQ1 < Q2 < CQ1.

Proof. We prove this substituting —t for Np of Lemma 2.5 in [1]. O

3. Equivalence of norms

We prove equivalence of mixed norms of an entire function and its radial
derivative for a radial weight function ¢ under Condition L.

Proposition 3.1. Let 0 < p,q < oo and t € R. If ¢ satisfies Condition L,

then
o] T2n—1€—p¢(r)
MP?(r, f)—————d
[ e e

is equivalent to

M(;]D(T, Rf) T2n—1e—p¢(r)

Mg(r()) f)+ /0 (IT+rd/'(r))P (14 ¢'(r))t o

for all f € H(C™).
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Proof. Let {ry}32_; be the sequence defined by (4). First, we suppose that
r2n—1,—pe(r)
/ MP(r, f) AT o0 —————dr < oo.
We note (1). Then

I / M r2n—1lg —W(T)d
= r
1+¢’( )t

Thk+1 p2n—1 —p¢(r)

NZ/ Mrder.

The fact that MP(r, Rf) and 7"2" ! are monotonically increasing yields
Tkl o—pé(r)
L= MP(ry, f)rin 1/ dr.
,;0 R N TG

By the mean value theorem for definite integrals, we have

e r = 1 e —pd (r))e P g
(8) /M (d)’(r))td = —p(¢' () +1 /Tk (—=pd'(r)) d

for some 7y < xf < rk41. The definition of a function ¢(r) yields

(9) /ml( —pd/(r))e P! Vdr = e (7P — 1),

Tk

By (6), we know
27L 1 —k;p

Lz ZM (rw, f ¢’(m))t+1

In addition, based on Lemma 2.1(a), we have r¢’(r) — oo as r — oo. Thus,
we may assume ¢’ (r) > 1 for all r > rq. It follows that

MP 7- Rf 2n—le—p¢(r)
Ri= [ Tt P GO
00 /rk+1 ‘]\4(;;7(7n7 Rf) ,],.2n7167p¢(r)
~ r
) N 7 05 I P )

2n—1

dr

By considering the monotonicity of MP(r, f) and r;""" again, we have

2n1

Thtl  o—po(r)
R<§:M7’rk LR ’““ / —dr.
Pt - e S (@(r))PF

By applying the mean value theorem for finite integrals and (9),

/Tk+1 e—P3(r) e kP(emP — 1)
o (

PO G P o e
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for some 7y < yr < rr4+1. Hence, we get

<e p_lz , f) 13111 e—kp
R ~ M T'k;+1,R .
p = (@)

By Lemma 2.4, we obtain

REY M)

k=0

2n—1 _
Th41 )p 7"1@11 e kP
Thi2 — Thtl e (@ (yr))Pritt

Moreover, both the definition of a function ¢(r) and the mean value theorem
yield

1 _ A(rr+1) — A(7k)

10 =q Zk
( ) Tk+1 — Tk Tk41 — Tk ¢ ( )
for some 7y < z < ris1. Therefore, it follows
< S P / priizl e P
R M , .
~ ];) q (Tkt2, ) (k10" (2841)) TZ (¢ (yi))Ptt1

Note that by Lemma 2.2, there exists C' > 0 such that
/
C—l S Tk+1¢ (Zk-i-l) <C
¢ (Yr)
for rp < yr < rgr1 < 2p41 < Tkr2. Again, by Lemma 2.2, we have
F2n=1,—(k+2)p

o0
RS MP(ryso, )it

k=0 ! (¢ (rh42))
Thus, we obtain
MY (ro, f) + R S L.
Now, we assume that
MP(r,Rf) rn-l
S
Since MP(r,Rf) and 7"2" ! are monotonically increasing, we have

T2n 1 Th41 6*P¢(T)
R>ZMP i, Rf) - /Tk (¢,(T))p+tdr.

k=0 k+1

dr < oo.

Then the mean value theorem for definite integrals and (9) give

,,,,2% 1 e—k;p
Rz M” rk,Rf)
kzo k+1 (¢' (yr) )P+t

for some ry < yr < Tip+1. Lemma 2.2 yields

2n —p— 1€—kp

R > ZMP Tk,Rf)W

k=0
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Furthermore, the estimate by the mean value theorem for definite integrals as
in (8) and the monotonicity of MP(r, f) and 2! yield

3 n 1 Tk+1 )
Lgkz_oMé)(rk+l’f)rk+ll—p(¢’(W/m ( P¢( )e~ po(r) g

for some ry, < xp < ri41. By applying (9) and Lemma 2.2(b), we obtain
2n—1 —kp

'f’k e
S ZM "k ) G

To apply Lemma 2.5, we con81der two cases: 0 < ¢ <1 and g > 1. First, let
0<q¢<1,v=p/q and Ay = MI(ry, f). Then Lemma 2.6 yields

2n—1 —kp

L < M{(ro, f) +Z ¢ ke, f fMg(m,f)ﬁW

By Lemma 2.5, we have

i Pern — 7\  p2n—le—hp
LS My (ro, f) + [( > M (k11 Rf)} T
) b +1
k=1 (¢'(rk))
From (10), we obtain
2n p—1 _—kp
L<Mp 7"07 +Z pM (’I"k+1,Rf) ¢

(¢ (7)) +
for some 7y < z < TE41. It follows from Lemma 2.2 that
L < Mg(’/‘o,f) + R.

Let ¢ > 1, v = p, and Ay = My(rg, f). Then the proof is similar to the case
where 0 < ¢ < 1; thus, we complete the proof. O

By applying the open mapping theorem as Remark 1 in [1], we prove Theo-
rem 1.3. When p = ¢, Theorem 1.3 is represented by Corollary 3.2.

Corollary 3.2. Let 0 < p < oo andt € R. If ¢ satisfies Condition L, then

[ PaG, o) = 0 + [, 00
for f € H(C™).

We denote a multi-index M = (my,...,m,), which is an n-tuple of nonneg-

ative integers, we use notation |[M| = mq + --- + m, and M = 9" ... M,
where J; denotes partial differentiation with respect to the j-th component.

Lemma 3.3. Let 0 <p<oo,t €R, and § > 0. Given a multi-index M, there
exists a positive constant C' such that

oM g(2)|Pe—rell=D e—Po(w) gV (w "
| /( )| T gc/ |g(w) P ——— (t)7 z€eC,
(1+¢'(|2]) Fs(2) (1+¢'(|wl]))
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for g € H(C™).
Proof. Let 0 < p < 0o, g € H(C"), and z € C™. By subharmonicity, we have
1
9 < o [ lawP V)
Vol[Es(2)] JE,(2)

_ A+ /E 9 V().

wn52n

where w,, is the volume of the unit ball of C". Hence, the Cauchy estimate
over a ball Es/(z) implies that

0Mg(2)]" < C(1+ ¢>/(|2|))p|M‘+2”/ lg(w)[? dV (w)
Es(z)

for some C > 0. We apply Lemma 2.3. This completes the proof. (I

Lemma 3.4. Fock type space Fg:‘g(@") contains constant functions.

Proof. 1t is sufficient to prove that there exists ry > 0 such that
o] 527L—1e—p¢(s)
(11) / —————ds< o0
o (#'(8))

for a weight function ¢ under Condition £. To prove (11), we note that for
r>1,

/7' 82n—le—p¢(s) J |:S2n—16—p¢(s) :| T +/7 ( g2n—1 )/ —pd(s) J
S = — e S
v (@(s)) —p(@' ()], Sy \p(¢'(5)) !
rgnfle—pdn(rg) T 32n71€7p¢(s)
S / t+1 + / t
p(¢'(ro)) v (¢'(5))

for some —1 < 8 < 1. For the above inequality, we claim that

< g2n—1 )’_(5%1 {2711 1 t+1 qﬁ”(s)]

(12) ds

p(¢'(s)) PN L P osd(s)  p (9(s))?
82n71
(¢'(s))*
for some —1 < 8 < 1 as follows: By Lemma 2.1(a), we consider that for any
sufficiently small €; > 0, there exists rg such that

<p

(13) —e < <€

L
5¢/(s)

for all s > rg. Moreover, we have

% (¢<>) B swl(s) - (ffﬁ
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Hence, (2) for Condition £ implies that for any sufficiently small e > 0, there
exists rg such that

1 . " (s) 1
(14) P oS B TS e

for all s > ro. Together with (13) and (14), we consider €; and ey that satisfy
the following inequalities:

m—1 1 t+1 ¢"(s) | _2n—1 1 [t+1] ¢"(s)

p sé(s)  p (@2 p sdls) p (¢(s))?
_—1 1 +|t+1|< 1 +6>
p sd(s) p \sd(s)
Mm—1+|t+1]  |t+1]
< €1+ €2

+ €2

<1

Therefore, we prove that there exists ry such that

2n—1 1  t+1 ¢"(s) )
p sd'(s) p (¢(s))?
for any s > ro. Hence, the inequality in (12) holds.
As r approaches infinity in (12), we know
o0 g2n—1 1 p2n—1le—paé(ro)
L, @ S = g
for some —1 < B < 1. Hence, it follows that
) 712n—1e—p¢(r)
| Ty <
Thus, the proof is complete. ([

Corollary 3.5. Let 0 < p < oo and t € R. Then the following norms

Rf(z) Vi)

I =10l |5 oo T (2]

)
LP(dGyp, ¢,t) ‘ LP(dGyp, ¢, ¢t)

are comparable to one another for f € H(C").

Proof. First, we claim that the F"7(C")-norm of f — f(0) is equivalent to the

norm of the product of its radial derivative and By Lemma 3.4, we

1
1+[z]¢’ (|2]) *
have that constant functions are contained in F}"/(C"). By applying Theorem

1.3 to f — f(0), we obtain

B » efpcb(\zl)dv(z) B |Rf(2)P efm(\z\)dv(z)
JRLCENU u+wwmf”/nu+mwwmpa+wwmf
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Second, we prove that F}"7(C")-norm of f — f(0) is equivalent to the norm
of the product of its complex gradient V f and Note that |Rf(z)| <

|z||V f(2)]. Hence, we have

If = £z 5 |

1
1+¢/(Iz]) "

Vi)
1+¢'(]2])

Lr(dGyp, 4, t)
Furthermore, Lemma 3.3 yields
P
g S 0O [ 150 = SO avi
Let § > 0 and 61 := 2C16, where Cy is the same constant as in Lemma 2.3.
Then it follows Es(z) C Es, (w) for w € E5(z) since we have
0 - C10
L+¢/'(lz]) 1+ ¢ (jw])
By integrating both sides of the above inequality against dG), ¢, + and applying
Fubini’s theorem, we have

(15)

H ViE) |
1+ ¢/(|z2]) LP(dGyp, ¢.1)
e P20 qV (2)
< fw—f0p1+¢’22"%de.
Lo 1000 = FOP 0 9o gt aviw)
Lemma 2.3 yields
Vi) | g
o f=FO)fra-
|55, . 51O
This proves the desired result. [

4. Lipschitz type characterization

Proof of Theorem 1.5. First, we assume that (b) holds. By fixing z and taking
limits w — z along the directions parallel to the coordinate axes, we have
0;F ()] S (L+¢'(|2])) Fg(2)
for each j. Thus, we get
IV£(2)]
1+¢/(lz]) ™
and hence, we obtain
e~ P20 gV ( e~ o2 gV (
[owreri i < [ ger o e
n (1+¢'(lz]))P " (1+¢'(l2])) P
By Corollary 3.5, we have g(z) € LP(Gy, ¢, —sp+¢), and thus f € F"7(C").
Second, we assume that (a) holds. Fix any § > 0. We set

Q5 o= {(z,0) : |w = 2|1+ ¢/(|2]) + ¢/ (lw])) < 6}

S(A+¢'(12)°g(2), zeC,
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Let (z,w) € Qs. Then we have w € Es(z) and
1+ ¢'(|z]) + ¢/ (|w]) = L+ ¢'(|2]),

by Lemma 2.3. From the fundamental theorem of calculus, it follows

£(2) — fw)] < |z — w] / V£ (pz + (1 — pyuw)|dp.

A line pz + (1 — p)w exists in Es(z) and it yields

(16) |f(z) = f(w)| < |z —w| sup [Vf(Q)-
CEEs(z)
We note that
ISP | 4 (s
(17) VOl = (1+¢'(|2]) + ¢'(lw])) A+ oc))

for ¢ € Es(z). Let
V)
= S T eI
By using (16) and (17), we obtain
[f(2) = F(w)| S 1z = w|(1+¢'(|2]) + &' (Jw])) 7 (hs(2) + hs(w))
for (z,w) € Qs.

Next, let (z,w) ¢ Q5. Then |z — w|(1 + ¢'(|z]) + ¢'(|w|)) > 6. Hence, it
follows

f(2) = f(w)] S

for s € R. Let

IZwl(1+¢’(2|)+¢’(lw|))”s< fl (W)l )
9 (A+¢'([2)* - (A4 (Jw]))®

.G
9(2) == hy(z) + 51+ ¢'(|2])*

for z € C". Then we have

[f(2) = f)] £ |2 = wl(1+ ¢/ ([2]) + ¢’ (Jw])) *(9(2) + g(w))
for each z,w € C™ with z # w. Note that a function g(z) is continuous on
C™. However, it remains to prove that the function g(z) is in L?(Gp ¢, —sp+t)-
Since % belongs to LP(Gp, ¢, —sp+t) for f € FJ7(C"), we claim that
hs exists in LP(Gp ¢, —sptt). For ¢ € E5(z), we have Es, (() C Es,(2) by (15),
where §; = 2C1d and 02 = 2C10;. From Lemma 3.3 and (6), we have

v P / n—s
(1 + ¢/(J;é|<)))|(l+s)p Sz (1 + ¢ (|Z|))2 P ~/1552(z) |f(w)|p dV(w).
By taking the supremum over ¢ € FEs(z), we get

P S L D [ ()P dv(w)

Es, (2)
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all z € C". Let 63 = 2C105. By integrating both sides of the above

inequality against the measure dG,, ¢, —sp+¢(2) and applying Fubini’s theorem,
we obtain

p
”hSHLp(Gp ®, —sptt)

on , e Po2DqV(2)
S [ L sl o 0 Gy 4V )

where x denotes the characteristic function in its subscripted set. For z €
Es,(w), we apply Lemma 2.3, and it yields

HmmngﬁqwgsAJﬂmwa+wmeQ

wn 02" e PovD v (w)
L+ ¢/ (lw])* (14 ¢'(lw])*

S I eps-

Thus, the proof is completed. O
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