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BLOCH-TYPE SPACES ON THE UPPER HALF-PLANE

Xi Fu and Junding Zhang

Abstract. We define Bloch-type spaces of C1(H) on the upper half plane
H and characterize them in terms of weighted Lipschitz functions. We also
discuss the boundedness of a composition operator Cφ acting between two
Bloch spaces. These obtained results generalize the corresponding known
ones to the setting of upper half plane.

1. Introduction

Let H = {z ∈ C : Imz > 0} be the upper half-plane, and C1(H) be the set of
all complex-valued functions having continuous partial derivatives on H. For
α > 0, the α-Bloch space on H, denoted by Bα, is defined to be the space of
all functions f ∈ C1(H) such that

‖f‖α = sup
z∈H

(Imz)α(|fz(z)|+ |fz(z)|) < ∞.

It is easy to check that the space Bα is a Banach space with the norm

‖f‖Bα = |f(i)|+ ‖f‖α.

Let ω : [0,+∞) → [0,+∞) be an increasing function with ω(0) = 0, we say
that ω is a majorant if ω(t)/t is non-increasing for t > 0 (cf. [6]). Following [2],
given a majorant ω and α > 0, the ω-α-Bloch space Bα

ω consists of all functions
f ∈ C1(H) such that

‖f‖ω,α = sup
z∈H

ω
(

(Imz)α
)

(|fz(z)|+ |fz(z)|) < ∞,(1)

and the little ω-α-Bloch space Bα
ω,0 consists of the functions f ∈ Bα

ω such that

lim
z→∂∞H

ω
(

(Imz)
α)

(|fz(z)|+ |fz(z)|) = 0,(2)

where ∂∞
H denotes the union of ∂H and {∞}.

If we denote by ˜Bα
ω the set of all functions f ∈ Bα

ω such that ω
(

(Imz)
α)

(|fz(z)|
+|fz(z)|) vanishing at ∞, then the condition (2) is equivalent to the condition
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that the function f ∈ ˜Bα
ω satisfies

lim
Imz→0

ω
(

(Imz)
α)

(|fz(z)|+ |fz(z)|) = 0.(3)

In particular, when ω(t) = t, we remark that the space Bα
ω is the α-Bloch space

Bα.
For 0 < α ≤ 1, the weighted Poincaré metric dsα of H, introduced in [1] is

defined as

ds2α =
|dz|2

(Imz)2α
.

Suppose that γ(t)(0 ≤ t ≤ 1) is a continuous and piecewise smooth curve in
H. Then the length of γ(t) with respect to the weighted Poincaré metric dsα
is equal to

Lpα
(γ) =

∫

γ

dsα =

∫ 1

0

|γ′(t)|

[Imγ(t)]α
dt.

Consequently, the associated distance between z and w in H is

pα(z, w) = inf{Lpα
(γ) : γ(0) = z, γ(1) = w},

where γ is a continuous and piecewise smooth curve in H. Note that p1 (α = 1)
is the classical Poincaré distance in H.

Let µ, ν ≥ 0 and f be a continuous function in H. If there exists a constant
C such that

(Imz)µ(Imw)ν |f(z)− f(w)| ≤ C|z − w| (resp. ≤ Cpα(z, w))

for any z, w ∈ H, then we say that f is a weighted Euclidian (resp. hyperbolic)
Lipschitz function of indices (µ, ν). In particular, when µ = ν = 0, we say that
f is a Euclidian (resp. hyperbolic) Lipschitz function (cf. [14]).

In the theory of function spaces, the relationship between Bloch spaces and
(weighted) Lipschitz functions has attracted much attention. In 1986, Hol-
land and Walsh ([8]) established a classical criterion for analytic Bloch space
in the unit disc D in terms of weighted Euclidian Lipschitz functions of in-
dices (12 ,

1
2 ). Since then, a series of work has been carried out to charac-

terize Bloch, α-Bloch, little α-Bloch and Besov spaces of holomorphic and
harmonic functions along this line. For instance, Ren and Tu [15] extended
Holland and Walsh’s criterion to the Bloch space in the unit ball of Cn, Li
and Wulan [9], Zhao [18] characterized holomorphic α-Bloch space in terms
of (1 − |z|2)β(1 − |w|2)α−β |f(z)− f(w)|/|z − w|. In [19, 20], Zhu investigated
the relationship between Bloch spaces and hyperbolic Lipschitz functions and
proved that a holomorphic function belongs to Bloch space if and only if it is
hyperbolic Lipschitz. For the related results of harmonic functions, we refer to
[2, 3, 4, 7, 14] and the references therein.

Motivated by the known results mentioned above, we consider the corre-
sponding problems in the setting of C1(H) in this paper. In Section 2, we
collect some known results that will be needed in the sequel. The main results
and their proofs are presented in Sections 3 and 4.
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Throughout this paper, constants are denoted by C, they are positive and
may differ from one occurrence to the other. The notation A ≍ B means that
there is a positive constant C such that B/C ≤ A ≤ CB.

2. Several lemmas

In this section, we introduce some notations and collect some preliminary
results that we need later.

Let z, w ∈ H, the pseudo-hyperbolic distance ρ is defined as

ρ(z, w) =
∣

∣

∣

z − w

z − w

∣

∣

∣.

It is easy to see that ρ on H is a distance function and horizontal translation and
dilatation invariant (cf. [11]). For z ∈ H and r ∈ (0, 1), the pseudo-hyperbolic

ball with center z and radius r is denoted by

E(z, r) = {w ∈ H : ρ(z, w) < r}.

A straightforward calculation shows that E(z, r) is a Euclidean ball B(x∗, r0)
where

x∗ = (x,
1 + r2

1− r2
y) , r0 =

2ry

1− r2
, and z = x+ yi.

The following lemma is proved in [11, Lemma 2.1].

Lemma 2.1. The inequality

1− ρ(z, w)

1 + ρ(z, w)
≤

∣

∣

∣

z − u

w − u

∣

∣

∣
≤

1 + ρ(z, w)

1− ρ(z, w)

holds for all z, w, u ∈ H.

As an application of Lemma 2.1, we easily get the following (see [4]).

Corollary 2.1. Let r ∈ (0, 1), u, v ∈ E(z, r). Then we have

Im u ≍ Im v ≍ |z − u| ≍ |E(z, r)|
1

2 ,

where |E(z, r)| denotes the area of E(z, r).

We end this section with two inequalities which will be used in the sequel.

Lemma 2.2 ([2, Lemma 6]). Let ω(t) be a majorant and u ∈ (0, 1], v ∈ (1,∞).
Then for t ∈ (0,∞),

ω(ut) ≥ uω(t), ω(vt) ≤ vω(t).

Lemma 2.3. Let a, b > 0, 0 < s < 1. Then sa+ (1− s)b ≥ asb1−s.
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3. Bloch spaces

Let f be a harmonic Bloch mapping in the unit disc D. In [5], Colonna
proved that the Bloch constant Bf of f is equals to its Bloch semi-norm, i.e.,

Bf = sup
z,w∈D,z 6=w

|f(z)− f(w)|

h(z, w)
= sup

z∈D

(1 − |z|2)(|fz(z)|+ |fz(z)|),

where h is the hyperbolic distance in D.
Firstly, we characterize the space Bα in terms of hyperbolic Lipschitz func-

tions and generalize Colonna’s result to the setting of C1(H).

Theorem 3.1. Let f ∈ C1(H) and 0 < α ≤ 1. Then f ∈ Bα if and only if

there is a constant C > 0 such that

|f(z)− f(w)| ≤ Cpα(z, w), z, w ∈ H.

Moreover, we have

‖f‖α = sup
z,w∈H,z 6=w

|f(z)− f(w)|

pα(z, w)

for all f ∈ Bα.

Proof. We first prove the sufficiency. For any z, w ∈ H, by the definition of
pα(z, w), we assume that γ(s) is the geodesic between z and w (parametrized
by arc-length) with respect to pα. Since pα(γ(0), γ(s)) = s, we have

|f(z)− f(w)| ≤ Cs.

Dividing both sides by s and then letting s → 0 in the above inequality gives

(|fz(z)|+ |fz(z)|)|γ
′(0)| ≤ C.

From the minimal length property of geodesics,

pα(γ(0), γ(s)) =

∫ s

0

|γ′(t)|

[Imγ(t)]α
dt = s, 0 < s < ǫ,

we obtain that

lim
s→0

1

s

∫ s

0

|γ′(t)|

[Imγ(t)]α
dt =

|γ′(0)|

(Imz)α
= 1.

It follows that (Imz)α(|fz(z)|+ |fz(z)|) ≤ C and hence f ∈ Bα with

(Imz)α(|fz(z)|+ |fz(z)|) : z ∈ H} ≤ sup
{ |f(z)− f(w)|

pα(z, w)
: z 6= w

}

.

Conversely, we assume that f ∈ Bα. Let z, w ∈ H and γ(t)(0 ≤ t ≤ 1) be a
smooth curve from z to w. Then we have

|f(z)− f(w)| =
∣

∣

∫ 1

0

df

dt
(γ(t))dt

∣

∣

≤

∫ 1

0

(|fz(γ(t))|+ |fz(γ(t))|)|γ
′(t)|dt
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≤ ‖f‖α

∫ 1

0

|γ′(t)|

[Imγ(t)]α
dt

≤ ‖f‖αpα(γ(t)).

Taking the infimum over all piecewise continuous curves connecting z and w,
we conclude that

|f(z)− f(w)| ≤ ‖f‖αpα(z, w)

for all z, w ∈ H. This completes the proof. �

In the following, we characterize the spaces Bα
ω , B

α
ω,0 in terms of Euclidean

weighted Lipschitz functions.

Theorem 3.2. Let r ∈ (0, 1), f ∈ C1(H), 0 < β ≤ α. Then f ∈ Bα
ω if and

only if

K = sup
w∈E(z,r),z 6=w

ω((Imz)β(Imw)α−β)
|f(z)− f(w)|

|z − w|
< ∞.

Proof. We first prove the sufficiency. Let f ∈ C1(H). For each z ∈ H, we have

sup
w∈E(z,r),z 6=w

|f(z)− f(w)|

|z − w|
≤

K

ω((Imz)β(Imw)α−β)
.

By letting w → z, we obtain that

|fz(z)|+ |fz(z)| ≤
K

ω((Imz)α)
,

from which we conclude that f ∈ Bα
ω .

Conversely, let f ∈ Bα
ω and for any w ∈ E(z, r), z 6= w,

|f(z)− f(w)| =
∣

∣

∫ 1

0

df

ds
(sz + (1− s)w)ds

∣

∣

≤ |z − w|

∫ 1

0

(

|
∂f

∂ζ
(sz + (1− s)w)| + |

∂f

∂ζ
(sz + (1− s)w)|

)

ds

≤ C|z − w|‖f‖ω,α

∫ 1

0

ds

ω((Im(sz + (1− s)w))α)

≤ C|z − w|

∫ 1

0

ds

ω((Imz)αs(Imw)α−αs)
,

where the last inequality follows from Lemma 2.3.
Since for each w ∈ E(z, r), z 6= w, Imz ≍ Imw, we can find a λ ∈ (0, 1) such

that Imz ≥ λ(Imw) and Imw ≥ λ(Imz). Then we infer that

|f(z)− f(w)|

|z − w|
≤ C

∫ 1

0

ds

ω((Imz)αs(Imw)α−αs)

≤ C

∫ 1

0

ds

ω((Imz)αλα−αs)



1342 X. FU AND J. ZHANG

≤
C

ω((Imz)α)

∫ 1

0

ds

λα−αs

≤
C

ω((Imz)α)
.

Thus,

sup
w∈E(z,r),z 6=w

ω((Imz)α)
|f(z)− f(w)|

|z − w|
< ∞.

By Lemma 2.2 again, we deduce that

ω((Imz)α) ≥ λα−βω(Imz)β(Imw)α−β),

from which we see that K < ∞. The proof of Theorem 3.2 is completed. �

Theorem 3.3. Let r ∈ (0, 1), f ∈ ˜Bα
ω, 0 < β ≤ α. Then f ∈ Bα

ω,0 if and only

if

(4) lim
Imz→0

sup
w∈E(z,r),z 6=w

ω((Imz)β(Imw)α−β)
|f(z)− f(w)|

|z − w|
= 0.

Proof. Sufficiency. Assume that (4) holds. Then for any ǫ > 0, there exists
δ > 0 such that

sup
w∈E(z,r),z 6=w

ω((Imz)β(Imw)α−β)
|f(z)− f(w)|

|z − w|
< ǫ

whenever 0 < Imz < δ. It follows by an argument similar to that in the proof
of Theorem 3.2, we have

ω((Imz)α)(|fz(z)|+ |fz(z)|) < Cω((Imz)β(Imw)α−β)
|f(z)− f(w)|

|z − w|
< Cǫ,

whenever 0 < Imz < δ, w ∈ E(z, r). Hence

lim
Imz→0

ω((Imz)α)(|fz(z)|+ |fz(z)|) = 0.

Necessity. Now we assume that f ∈ Bα
ω,0. For t ∈ (0,+∞), let ft(z) =

f(z + ti). By the proof of Theorem 3.2, for w ∈ E(z, r), we have

ω((Imz)β(Imw)α−β)
|(f − ft)(z)− (f − ft)(w)|

|z − w|
≤ C‖f − ft‖ω,α

and

ω((Imz)β(Imw)α−β)
|ft(z)− ft(w)|

|z − w|

=
ω((Imz)β(Imw)α−β)

ω((Imz + t)β(Imw + t)α−β)

ω((Imz + t)β(Imw + t)α−β)|f(z + ti)− f(w + ti)|

|z − w|

≤
Cω((Imz)β(Imw)α−β)

ω((Imz + t)β(Imw + t)α−β)
‖f‖ω,α.
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By the triangle inequality,

sup
w∈E(z,r),z 6=w

ω((Imz)β(Imw)α−β)
|f(z)− f(w)|

|z − w|

≤ C‖f − ft‖ω,α +
Cω((Imz)β(Imw)α−β)

ω((Imz + t)β(Imw + t)α−β)
‖f‖ω,α.

In the above inequality, first by letting Imz → 0 and then letting t → 0, we
obtain the desired result. �

Remark 3.1. When ω(t) = t, Li and Wulan [9] obtained the analogues of
Theorems 3.2 and 3.3 for holomorphic Bloch space on the unit ball of Cn.

In the following, we remove the restriction w ∈ E(z, r) in Theorems 3.2 and
3.3 and obtain the following results which can be viewed as generalizations of
[2, Theorems 3, 5] to the case of C1(H).

Theorem 3.4. Let f ∈ C1(H), 0 < β < 1, β ≤ α < 1+ β. Then f ∈ Bα
ω if and

only if

sup
z,w∈H,z 6=w

ω((Imz)β(Imw)α−β)
|f(z)− f(w)|

|z − w|
< ∞.(5)

Proof. Assume that (5) holds. Fix r ∈ (0, 1) and x ∈ H, it follows from the
proof of Theorem 3.2, we can easily prove that f ∈ Bα

ω . For the converse, we
assume that f ∈ Bα

ω . Then for z, w ∈ H,

|f(z)− f(w)| ≤ C|z − w|

∫ 1

0

ds

ω((Im(sz + (1− s)w))α)
.

Since for z, w ∈ H and s ∈ [0, 1],

(sImz + (1 − s)Imw)α ≥ (sImz)β((1− s)Imw)α−β ,

we get that

|f(z)− f(w)| ≤ C|z − w|

∫ 1

0

ds

ω
(

(sImz + (1− s)Imw)α
)

≤ C|z − w|

∫ 1

0

ds

ω(sβ(1− s)α−β(Imz)β(Imw)α−β)

≤
C|z − w|

ω((Imz)β(Imw)α−β)

∫ 1

0

ds

sβ(1 − s)α−β

≤
C|z − w|

ω((Imz)β(Imw)α−β)
,

where the last integral converges since α < 1 + β. Thus

sup
z,w∈H,z 6=w

ω((Imz)β(Imw)α−β)
|f(z)− f(w)|

|z − w|
< ∞.

This completes the proof of Theorem 3.4. �
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Similarly, we can prove the following.

Theorem 3.5. Let f ∈ ˜Bα
ω, 0 < β < 1, β ≤ α < 1 + β. Then f ∈ Bα

ω,0 if and

only if

lim
Imz→0

sup
z,w∈H,z 6=w

ω((Imz)β(Imw)α−β)
|f(z)− f(w)|

|z − w|
= 0.

4. Composition operators

Let φ be a holomorphic self-mapping of H. The composition operator Cφ,
induced by φ is defined by Cφ(f) = f ◦ φ for f ∈ C1(H). During the past
few years, composition operators have been studied extensively on spaces of
holomorphic functions on various domains in C and C

n, see e.g., [13, 10, 16, 21].
In this section, we discuss the boundedness of composition operators between
Bloch spaces on the upper half plane H.

Theorem 4.1. Let α, β > 0 and φ be a holomorphic self-mapping of H. Then

Cφ : Bα → Bβ is bounded if and only if

sup
z∈H

(Imz)β|φ′(z)|

(Imφ(z))α
< ∞.(6)

Proof. First suppose that

M = sup
z∈H

(Imz)β|φ′(z)|

(Imφ(z))α
< ∞.

For f ∈ Bα and z ∈ H, we have

(Imz)β(|Cφ(f)z |+ |Cφ(f)z|) = (Imz)β(|(f ◦ φ)z(z)|+ |(f ◦ φ)z(z)|)

= (Imz)β |φ′(z)|(|fz(φ(z))|+ |fz(φ(z))|)

≤ M(Imφ(z))α|(|fz(φ(z))| + |fz(φ(z))|)

≤ C‖f‖α

and

|f(φ(i))| ≤ C‖f‖α.

Hence Cφ : Bα → Bβ is bounded.
For the converse, assume that Cφ : Bα → Bβ is a bounded operator with

‖Cφ(f)‖β ≤ C‖f‖α

for all f ∈ Bα. Fix a point z0 ∈ H and let w = φ(z0). If α 6= 1, consider the
function fw(z) = (z − w)1−α. Then it is easy to check that fw ∈ Bα. The
boundedness of Cφ implies that

(Imz)β|φ′(z))|

|φ(z)− w|α
≤ C.
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In particular, take z = z0, we get

(Imz0)
β |φ′(z0)|

(Imφ(z0))α
≤ C.

Since z0 is arbitrary, the result follows.
If α = 1, we only need to consider the function fw(z) = ln(z−w). Following

a discussion similar to the above, it can be proved that (6) holds. The proof of
Theorem 4.1 is completed. �

Recall that the classical Schwarz-Pick Lemma in the upper half-plane gives
that for a holomorphic self-mapping φ of H, (Imz)|φ′(z)| ≤ Imφ(z) holds for
all z ∈ H. As an application of this result, it is easy to derive the following
corollary.

Corollary 4.1. Let φ be a holomorphic self-mapping of H. Then Cφ : B1 → B1

is bounded.
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