• Title/Summary/Keyword: Lipschitz spaces

Search Result 82, Processing Time 0.017 seconds

BERGMAN SPACES, BLOCH SPACES AND INTEGRAL MEANS OF p-HARMONIC FUNCTIONS

  • Fu, Xi;Qiao, Jinjing
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.481-495
    • /
    • 2021
  • In this paper, we investigate the properties of Bergman spaces, Bloch spaces and integral means of p-harmonic functions on the unit ball in ℝn. Firstly, we offer some Lipschitz-type and double integral characterizations for Bergman space ��kγ. Secondly, we characterize Bloch space ��αω in terms of weighted Lipschitz conditions and BMO functions. Finally, a Hardy-Littlewood type theorem for integral means of p-harmonic functions is established.

APPROXIMATION IN LIPSCHITZ ALGEBRAS OF INFINITELY DIFFERENTIABLE FUNCTIONS

  • Honary, T.G.;Mahyar, H.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.629-636
    • /
    • 1999
  • We introduce Lipschitz algebras of differentiable functions of a perfect compact plane set X and extend the definition to Lipschitz algebras of infinitely differentiable functions of X. Then we define the subalgebras generated by polynomials, rational functions, and analytic functions in some neighbourhood of X, and determine the maximal ideal spaces of some of these algebras. We investigate the polynomial and rational approximation problems on certain compact sets X.

  • PDF

LIPSCHITZ TYPE CHARACTERIZATIONS OF HARMONIC BERGMAN SPACES

  • Nam, Kyesook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.1277-1288
    • /
    • 2013
  • Wulan and Zhu [16] have characterized the weighted Bergman space in the setting of the unit ball of $C^n$ in terms of Lipschitz type conditions in three different metrics. In this paper, we study characterizations of the harmonic Bergman space on the upper half-space in $R^n$. Furthermore, we extend harmonic analogues in the setting of the unit ball to the full range 0 < p < ${\infty}$. In addition, we provide the application of characterizations to showing the boundedness of a mapping defined by a difference quotient of harmonic function.

ON THE ON THE CONVERGENCE BETWEEN THE MANN ITERATION AND ISHIKAWA ITERATION FOR THE GENERALIZED LIPSCHITZIAN AND Φ-STRONGLY PSEUDOCONTRACTIVE MAPPINGS

  • Xue, Zhiqun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.635-644
    • /
    • 2008
  • In this paper, we prove that the equivalence between the convergence of Mann and Ishikawa iterations for the generalized Lipschitzian and $\Phi$-strongly pseudocontractive mappings in real uniformly smooth Banach spaces. Our results significantly generalize the recent known results of [B. E. Rhoades and S. M. Soltuz, The equivalence of Mann iteration and Ishikawa iteration for non-Lipschitz operators, Int. J. Math. Math. Sci. 42 (2003), 2645.2651].

A BMO TYPE CHARACTERIZATION OF WEIGHTED LIPSCHITZ FUNCTIONS IN TERMS OF THE BEREZIN TRANSFORM

  • Cho, Hong-Rae;Seo, Yeoung-Tae
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.3
    • /
    • pp.419-428
    • /
    • 2006
  • The Berezin transform is the analogue of the Poisson transform in the Bergman spaces. Dyakonov characterize the holomorphic weighted Lipschitz function in the unit disk in terms of the Possion integral. In this paper, we characterize the harmonic weighted Lispchitz function in terms of the Berezin transform instead of the Poisson integral.