DOI QR코드

DOI QR Code

STRONG CONVERGENCE BY PSEUDOCONTRACTIVE MAPPINGS FOR THE NOOR ITERATION SCHEME

  • Received : 2014.12.01
  • Accepted : 2015.02.13
  • Published : 2015.05.31

Abstract

In this paper, we establish a strong convergence for the Noor iterative scheme associated with Lipschitz strongly pseudocontractive mappings in real Banach spaces. It's proof-method is very simple by comparing with the previous proofs known.

Keywords

References

  1. V. Berinde, Generalized Contractions and Applications (Romanian), Editura Cub Press 22, Baia Mare, 1997.
  2. J. Bogin, On strict pseudocontractions and a fixed point theorem, Technion Preprint MT-29, Haifa, 1974.
  3. C. E. Chidume, Approximation of fixed points of strongly pseudocontractive mappings, Proc. Amer. Math. Soc. 120 (2) (1994), 545-551. MR 94d:47056 https://doi.org/10.1090/S0002-9939-1994-1165050-6
  4. C. E. Chidume, A. Udomene, Strong convergence theorems for uniformly continuous pseudocontractive maps, J. Math. Anal. Appl. 323 (1) (2006), 88-99. https://doi.org/10.1016/j.jmaa.2005.10.026
  5. K. Deimling, Zeros of accretive operators, Manucripta Math. 13 (1974), 283-288. MR 50:3030
  6. Z. Haiyun and J. Yuting, Approximation of fixed points of strongly pseudocontractive maps without Lipschitz assumption, Proc. Amer. Math. Soc. 125 (6) (1997), 1705-1709. https://doi.org/10.1090/S0002-9939-97-03850-1
  7. S. Ishikawa, Fixed point by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147-150. https://doi.org/10.1090/S0002-9939-1974-0336469-5
  8. T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 508-520. https://doi.org/10.2969/jmsj/01940508
  9. W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510. https://doi.org/10.1090/S0002-9939-1953-0054846-3
  10. M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl. 251 (2000), 217-229. https://doi.org/10.1006/jmaa.2000.7042
  11. M. A. Noor, T. M. Rassias and Z. Huang, Three-step iterations for nonlinear accretive operator equations, J. Math. Anal. Appl. 274 (2002), 59-68. https://doi.org/10.1016/S0022-247X(02)00224-X
  12. Liu Qihou, Iterative sequences for asymptotically quasi-nonexpansive mappings with error member, J. Math. Anal. Appl. 259 (2001), 18-24. https://doi.org/10.1006/jmaa.2000.7353
  13. A. Rafiq, Modified Noor iterations for nonlinear equations in Banach spaces, Appl. Math. Compt. 182 (2006), 589-595. https://doi.org/10.1016/j.amc.2006.04.021
  14. A. Rafiq, Iterative solution of nonlinear equations involving generalized ${\phi}$-hemicontractive mappings, Indian J. Math. 50 (2) (2008), 365-380.
  15. A. Rafiq, A new implicit iteration process for three strongly pseudocontractive mappings, Indian J. Math. 53 (3) (2011), 419-428.
  16. J. Schu, Approximating fixed points of Lipschitzian pseudocontractive mappings, Houston J. Math. 19 (1993), 107-115.
  17. H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (12) (1991), 1127-1138. https://doi.org/10.1016/0362-546X(91)90200-K