• 제목/요약/키워드: Lipschitz function

검색결과 66건 처리시간 0.024초

LIPSCHITZ REGULARITY OF M-HARMONIC FUNCTIONS

  • Youssfi, E.H.
    • 대한수학회지
    • /
    • 제34권4호
    • /
    • pp.959-971
    • /
    • 1997
  • In the paper we introduce Hausdorff measures which are suitable or the study of Lipschitz regularity of M-harmonic function in the unit ball B in $C^n$. For an M-harmonic function h which satisfies certain integrability conditions, we show that there is an open set $\Omega$, whose Hausdorff content is arbitrarily small, such that h is Lipschitz smooth on $B \backslash \Omega$.

  • PDF

FATOU THEOREM AND EMBEDDING THEOREMS FOR THE MEAN LIPSCHITZ FUNCTIONS ON THE UNIT BALL

  • Cho, Hong-Rae;Lee, Jin-Kee
    • 대한수학회논문집
    • /
    • 제24권2호
    • /
    • pp.187-195
    • /
    • 2009
  • We investigate the boundary values of the holomorphic mean Lipschitz function. In fact, we prove that the admissible limit exists at every boundary point of the unit ball for the holomorphic mean Lipschitz functions under some assumptions on the Lipschitz order. Moreover, we get embedding theorems of holomorphic mean Lipschitz spaces into Hardy spaces or into the Bloch space on the unit ball in $\mathbb{C}_n$.

GAP FUNCTIONS AND ERROR BOUNDS FOR GENERAL SET-VALUED NONLINEAR VARIATIONAL-HEMIVARIATIONAL INEQUALITIES

  • Jong Kyu Kim;A. A. H. Ahmadini;Salahuddin
    • Nonlinear Functional Analysis and Applications
    • /
    • 제29권3호
    • /
    • pp.867-883
    • /
    • 2024
  • The objective of this article is to study the general set-valued nonlinear variational-hemivariational inequalities and investigate the gap function, regularized gap function and Moreau-Yosida type regularized gap functions for the general set-valued nonlinear variational-hemivariational inequalities, and also discuss the error bounds for such inequalities using the characteristic of the Clarke generalized gradient, locally Lipschitz continuity, inverse strong monotonicity and Hausdorff Lipschitz continuous mappings.

RELATIONS BETWEEN BANACH FUNCTION ALGEBRAS AND FRÉCHET FUNCTION ALGEBRAS

  • SADY, F.
    • 호남수학학술지
    • /
    • 제20권1호
    • /
    • pp.79-88
    • /
    • 1998
  • In this paper we define the concept of $Fr{\acute{e}}chet$ function algebras on hemicompact spaces. So we show that under certain condition they can be represented as a projective limit of Banach function algebras. Then the class of $Fr{\acute{e}}chet$ Lipschitz algebras on hemicompact metric spaces are defined and their relations with the class of lipschitz algebras on compact metric spaces are studied.

  • PDF

WGAN의 성능개선을 위한 효과적인 정칙항 제안 (Proposing Effective Regularization Terms for Improvement of WGAN)

  • 한희일
    • 한국멀티미디어학회논문지
    • /
    • 제24권1호
    • /
    • pp.13-20
    • /
    • 2021
  • A Wasserstein GAN(WGAN), optimum in terms of minimizing Wasserstein distance, still suffers from inconsistent convergence or unexpected output due to inherent learning instability. It is widely known some kinds of restriction on the discriminative function should be considered to solve such problems, which implies the importance of Lipschitz continuity. Unfortunately, there are few known methods to satisfactorily maintain the Lipschitz continuity of the discriminative function. In this paper we propose techniques to stably maintain the Lipschitz continuity of the discriminative function by adding effective regularization terms to the objective function, which limit the magnitude of the gradient vectors of the discriminator to one or less. Extensive experiments are conducted to evaluate the performance of the proposed techniques, which shows the single-sided penalty improves convergence compared with the gradient penalty at the early learning process, while the proposed additional penalty increases inception scores by 0.18 after 100,000 number of learning.

The Maximal Ideal Space of Extended Differentiable Lipschitz Algebras

  • Abolfathi, Mohammad Ali;Ebadian, Ali
    • Kyungpook Mathematical Journal
    • /
    • 제60권1호
    • /
    • pp.117-125
    • /
    • 2020
  • In this paper, we first introduce new classes of Lipschitz algebras of infinitely differentiable functions which are extensions of the standard Lipschitz algebras of infinitely differentiable functions. Then we determine the maximal ideal space of these extended algebras. Finally, we show that if X and K are uniformly regular subsets in the complex plane, then R(X, K) is natural.

REAL-VARIABLE CHARACTERIZATIONS OF VARIABLE HARDY SPACES ON LIPSCHITZ DOMAINS OF ℝn

  • Liu, Xiong
    • 대한수학회보
    • /
    • 제58권3호
    • /
    • pp.745-765
    • /
    • 2021
  • Let Ω be a proper open subset of ℝn and p(·) : Ω → (0, ∞) be a variable exponent function satisfying the globally log-Hölder continuous condition. In this article, the author introduces the "geometrical" variable Hardy spaces Hp(·)r (Ω) and Hp(·)z (Ω) on Ω, and then obtains the grand maximal function characterizations of Hp(·)r (Ω) and Hp(·)z (Ω) when Ω is a strongly Lipschitz domain of ℝn. Moreover, the author further introduces the "geometrical" variable local Hardy spaces hp(·)r (Ω), and then establishes the atomic characterization of hp(·)r (Ω) when Ω is a bounded Lipschitz domain of ℝn.

ON STABILITY OF NONLINEAR NONAUTONOMOUS SYSTEMS BY LYAPUNOV'S DIRECT METHOD

  • Park, Jong-Yeoul;Phat, Vu-Ngoc;Jung, Il-Hyo
    • 대한수학회지
    • /
    • 제37권5호
    • /
    • pp.805-821
    • /
    • 2000
  • The paper deals with asymtotic stabillity of nonlinear nonautinomous systems by Lyapunov's direct method. The proposed Lyapunov-like function V(t, x) needs not be continuous in t and Lipschitz in x in a Banach space. The class of systems considered is allowed to be nonautonomous and infinite-dimensional and we relax the boundedness, the Lipschitz assumption on the system and the definite decrescent condition on the Lyapunov function.

  • PDF

A BMO TYPE CHARACTERIZATION OF WEIGHTED LIPSCHITZ FUNCTIONS IN TERMS OF THE BEREZIN TRANSFORM

  • Cho, Hong-Rae;Seo, Yeoung-Tae
    • 대한수학회논문집
    • /
    • 제21권3호
    • /
    • pp.419-428
    • /
    • 2006
  • The Berezin transform is the analogue of the Poisson transform in the Bergman spaces. Dyakonov characterize the holomorphic weighted Lipschitz function in the unit disk in terms of the Possion integral. In this paper, we characterize the harmonic weighted Lispchitz function in terms of the Berezin transform instead of the Poisson integral.