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REAL-VARIABLE CHARACTERIZATIONS OF VARIABLE

HARDY SPACES ON LIPSCHITZ DOMAINS OF Rn

Xiong Liu

Abstract. Let Ω be a proper open subset of Rn and p(·) : Ω → (0, ∞)
be a variable exponent function satisfying the globally log-Hölder contin-

uous condition. In this article, the author introduces the “geometrical”

variable Hardy spaces H
p(·)
r (Ω) and H

p(·)
z (Ω) on Ω, and then obtains the

grand maximal function characterizations of H
p(·)
r (Ω) and H

p(·)
z (Ω) when

Ω is a strongly Lipschitz domain of Rn. Moreover, the author further in-

troduces the “geometrical” variable local Hardy spaces h
p(·)
r (Ω), and then

establishes the atomic characterization of h
p(·)
r (Ω) when Ω is a bounded

Lipschitz domain of Rn.

1. Introduction

The real-variable theory of Hardy spaces Hp(Ω) with p ∈ (0, 1] on domains
of Rn and their duals are well studied (see, for example, [14]) and have been
playing an important and fundamental role in the boundary value problems for
the Laplace equation. In recent years, there has been a lot of attention paid to
the study of Hardy spaces on domains of Rn, which has become a very active
research topic in harmonic analysis (see, for instance, [1, 3–7,13,16]).

Originally, Chang et al. [7] introduced the Hardy spaces Hp
r (Ω) and Hp

z (Ω)
on domains Ω of Rn, respectively, by restricting arbitrary elements of Hp(Rn)
to Ω, and restricting elements of Hp(Rn) which are zero outside Ω to Ω, where
and in what follows, Ω denotes the closure of Ω in Rn. For the Hardy spaces
Hp
r (Ω) and Hp

z (Ω), atomic characterizations have been obtained in [7] when Ω
is a special Lipschitz domain or a bounded Lipschitz domain of Rn, and grand
maximal function characterizations have been established in [8] when Ω is a
strongly Lipschitz domain of Rn. Moreover, Chang et al. [7] also introduced
the local Hardy spaces hpr(Ω) and hpz(Ω) in a similar way and obtained atomic

Received June 22, 2020; Revised October 29, 2020; Accepted November 18, 2020.
2010 Mathematics Subject Classification. Primary 42B30; Secondary 42B25, 46A20,

42B35, 46E30.
Key words and phrases. Variable Hardy space, grand maximal function, atom, Lipschitz

domains.
This work is supported by the National Natural Science Foundation of China (Grant No.

11871254).

c©2021 Korean Mathematical Society

745



746 X. LIU

decompositions for these local Hardy spaces when Ω is a bounded Lipschitz
domain of Rn.

On the other hand, as a natural generalization of classical Hardy spaces,
Nakai and Sawano [15] introduced the variable Hardy space Hp(·)(Rn), estab-
lished their atomic characterizations and investigated their dual spaces. Inde-
pendently, Cruz-Uribe and Wang [10] also investigated the variable Hardy space
Hp(·)(Rn) with p(·) satisfying some conditions slightly weaker than those used
in [15]. In [10], equivalent characterizations of Hp(·)(Rn) by means of radial or
non-tangential maximal functions or atoms were established. Moreover, Yang
et al. [19, 22] established equivalent characterizations of variable Hardy space
Hp(·)(Rn) via Riesz transforms and intrinsic square functions. Furthermore,
Tan [17] introduced the variable local Hardy space hp(·)(Rn) and established
atomic characterizations for hp(·)(Rn) by using the discrete Littlewood-Paley-
Stein theory.

As a more general class of function spaces including both Hardy spaces on
Euclidean spaces with variable exponents Hp(·)(Rn) and Hardy spaces on RD-
spaces with constant exponents Hp(X ). Recently, Zhuo et al. [20] introduced
the variable Hardy space H∗, p(·)(X ) on the so-called RD-space with infinite
measures via the grand maximal function, and then obtained its several real-
variable characterizations, respectively, in terms of atoms and Littlewood–Paley
functions.

Motivated by the above results, especially by the theory of the classical
Hardy space on domains in [5,7,8] and the variable Hardy space in [10,15,20],
it is the main target of this article to establish a real-variable theory of the
“geometrical” variable (local) Hardy spaces on a proper open subset Ω in Rn.
Precisely, let Ω be a proper open subset of Rn and p(·) : Ω→ (0, ∞) be a vari-
able exponent function satisfying the globally log-Hölder continuous condition.
In this article, the author introduces the “geometrical” variable Hardy spaces

H
p(·)
r (Ω) and H

p(·)
z (Ω) on Ω, and then obtains the grand maximal function

characterizations of H
p(·)
r (Ω) and H

p(·)
z (Ω) when Ω is a strongly Lipschitz do-

main of Rn. Moreover, the author further introduces the “geometrical” variable

local Hardy spaces h
p(·)
r (Ω), and then establishes the atomic characterization

of h
p(·)
r (Ω) when Ω is a bounded Lipschitz domain of Rn.

To state the main results of this article, we begin with recall some notation
and notions. Let Ω be an open subset in Rn. A measurable function p(·) : Ω→
(0,∞) is called a variable exponent. Moreover, for any given variable exponent
p(·), let

(1.1) p− := ess inf
x∈Ω

p(x), p+ := ess sup
x∈Ω

p(x) and p := min{p−, 1}.

Denote by P(Ω) the set of all variable exponents p(·) on Ω satisfying 0 < p− ≤
p+ <∞.

Let f be a measurable function on Ω and p(·) ∈ P(Ω). Then the modular
function (for simplicity, the modular) %p(·), associated with p(·), is defined by
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setting

%p(·)(f) :=

∫
Ω

|f(x)|p(x)dx

and the Luxemburg (also called Luxemburg–Nakano) quasi-norm ‖f‖Lp(·)(Ω) of
f is defined by

‖f‖Lp(·)(Ω) := inf
{
λ ∈ (0, ∞) : %p(·)(f/λ) ≤ 1

}
.

Furthermore, the variable Lebesgue space Lp(·)(Ω) is defined to the set of all
measurable functions f on Ω satisfying that %p(·)(f) < ∞, equipped with the
quasi-norm ‖f‖Lp(·)(Ω).

A function p(·) ∈ P(Ω) is said to satisfy the globally log-Hölder contin-
uous condition, denoted by p(·) ∈ C log(Ω), if there exist positive constants
Clog, C∞ ∈ (0,∞) and p∞ ∈ R, where p∞ := limx→∞ p(x), such that, for any
x, y ∈ Ω,

|p(x)− p(y)| ≤ Clog

log(e+ 1/|x− y|)
and |p(x)− p∞| ≤

C∞
log(e+ |x|)

.

In the whole article, we denote by S(Rn) the space of all Schwartz functions
and by S ′(Rn) its topological dual space. For N ∈ N := {1, 2, . . .} and Z+ :=
{0} ∪ N, let

FN (Rn) :=

{
ψ ∈ S(Rn) :

∑
α∈Zn+, |α|≤N

sup
x∈Rn

(1 + |x|)N |∂αψ(x)| ≤ 1

}
,(1.2)

where, for any α := (α1, . . . , αn) ∈ Zn+ := (Z+)n, |α| := α1 + · · ·+αn and ∂α :=

( ∂
∂x1

)α1 · · · ( ∂
∂xn

)αn . Then, for all f ∈ S ′(Rn), the grand maximal function

Mψ(f) of f is defined by setting, for all x ∈ Rn,

Mψ(f)(x) := sup {|f ∗ ψt(x)| : t ∈ (0,∞) and ψ ∈ FN (Rn)} ,(1.3)

where, for all t ∈ (0, ∞) and x ∈ Rn, ψt(x) := t−nψ(x/t).
We begin with recall the definition of the variable Hardy space Hp(·)(Rn),

which can be found in [15, Definition 1.1].

Definition 1.1. Let p(·) ∈ C log(Rn) and N ∈ (n/(p−) +n+ 1, ∞)∩N, where
p− is as in (1.1). The variable Hardy space denoted by Hp(·)(Rn), is defined to
be the set of all f ∈ S ′(Rn) such that Mψ(f) ∈ Lp(·)(Rn) with the quasi-norm

‖f‖Hp(·)(Rn) := ‖Mψ(f)‖Lp(·)(Rn),

where Mψ(f) is as in (1.3).

For an open subset Ω ⊂ Rn, let D(Ω) denote the space of all infinitely dif-
ferentiable functions with compact supports in Ω equipped with the inductive
topology and D′(Ω) its topological dual equipped with the weak-∗ topology,
which is called the space of distributions on Ω. Then we introduce the “geo-

metric” variable Hardy spaces H
p(·)
z (Ω) and H

p(·)
r (Ω) on proper open subset

Ω ⊂ Rn following the way in [7, 8].
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Definition 1.2. Let Ω ⊂ Rn be a proper open subset and p(·) ∈ P(Rn). Then

the variable Hardy space H
p(·)
z (Ω) is defined by setting

Hp(·)
z (Ω) :=

{
f ∈ D′(Rn) : f ∈ Hp(·)(Rn), supp (f) ⊂ Ω

}
equipped with the quasi-norm ‖f‖

H
p(·)
z (Ω)

:= ‖f‖Hp(·)(Rn), where Ω denotes the

closure of Ω in Rn.
A distribution f on Ω is said to belong to the variable Hardy space H

p(·)
r (Ω)

if f is the restriction to Ω of a distribution F ∈ Hp(·)(Rn), namely,

Hp(·)
r (Ω) : =

{
f ∈ D′(Ω) : there exists an F ∈ Hp(·)(Rn) such that F |Ω = f

}
= Hp(·)(Rn)/

{
F ∈ Hp(·)(Rn) : F = 0 on Ω

}
.

Moreover, for any f ∈ Hp(·)
r (Ω), the quasi-norm ‖f‖

H
p(·)
r (Ω)

of f in H
p(·)
r (Ω) is

defined by setting

‖f‖
H
p(·)
r (Ω)

:= inf
{
‖F‖Hp(·)(Rn) : F ∈ Hp(·)(Rn) and F |Ω = f

}
,

where the infimum is taken over all F ∈ Hp(·)(Rn) satisfying F = f on Ω.

Our first main result is the grand maximal function characterizations of the

variable Hardy spaces H
p(·)
z (Ω) and H

p(·)
r (Ω) on a strongly Lipschitz domain

Ω of Rn. To this end, we recall the following definition of grand maximal
functions (see, [8]). In what follows, for any q ∈ [1, ∞], we denote by q′ its
conjugate index, namely, 1/q + 1/q′ = 1.

For any x ∈ Rn and n
n+1 < p− ≤ p+ ≤ 1, where p− and p+ are as in (1.1),

denote by Fx(Ω) the collection of all φ ∈ D(Rn), for which there exists a cube
Q such that supp (φ) ⊂ Q, x ∈ Q, cQ ∈ Ω and

‖φ‖L∞(Rn) + `(Q)‖∇φ‖L∞(Rn) ≤ |Q|−1,

here and hereafter, cQ denotes the center of the cube Q and `(Q) its sidelength.
For each x ∈ Ω, let

Gx(Ω) := {φ ∈ Fx(Ω) : φ = 0 on ∂Ω} .
For each f ∈ D′(Rn) and any x ∈ Rn, let

Mz(f)(x) := sup
φ∈Fx(Ω)

|〈f, φ〉| .

Let p∗ := np−
n−p− , where p− is as in (1.1), q := p∗

p∗−1 and W 1, q
0 (Ω) denote

the Sobolev space with zero boundary values on Ω. For each bounded linear
functional f on W 1, q

0 (Ω), for any x ∈ Ω, let

Mr(f)(x) := sup
φ∈Gx(Ω)

|〈f, φ1Ω〉| ,

where 1Ω denotes the characteristic function of Ω. From the fact that φ ∈
Gx(Ω), it follows that φ1Ω ∈W 1, q

0 (Ω), which implies thatMr(f) is well defined.
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For any x ∈ Rn, n
n+1 < p− ≤ p+ ≤ 1, where p− and p+ are as in (1.1), and

p∗

p∗−1 < q < ∞, we denote by F qx (Ω) the collection of all φ ∈ D(Rn), which

satisfy supp (φ) ⊂ Q, x ∈ Q, cQ ∈ Ω and

‖φ‖Lq(Rn) + `(Q)‖∇φ‖Lq(Rn) ≤ |Q|−1/q′ .

Similarly, for each x ∈ Ω, we let

Gqx(Ω) := {φ ∈ F qx (Ω) : φ = 0 on ∂Ω} .

We then let, for f ∈ D′(Rn) and x ∈ Rn,

M (q)
z (f)(x) := sup

φ∈F qx (Ω)

|〈f, φ〉| .

For each bounded linear functional f on W 1, q
0 (Ω) and for any x ∈ Ω, let

M (q)
r (f)(x) := sup

φ∈Gqx(Ω)

|〈f, φ1Ω〉| .

From the fact that φ ∈ Gqx(Ω), it follows that φ1Ω ∈ W 1, q
0 (Ω), which implies

that M
(q)
r (f) is well defined.

A domain Ω of Rn (n ≥ 2) is said to be strongly Lipschitz if it is a Lipschitz
domain and its boundary ∂Ω is a finite union of parts of rotated graphs of
Lipschitz maps and, at most one of these parts possibly unbounded. Moreover,
a domain Ω ⊂ Rn is said to be a special Lipschitz domain, i.e., Ω := {(x′, xn) :
xn > λ(x′)}. Here λ : Rn−1 → R is a function which satisfies the Lipschitz
condition |λ(x′) − λ(y′)| ≤ A |x′ − y′| for all x′, y′ ∈ Rn−1. It is well known
that strongly Lipschitz domains include special Lipschitz domains, bounded
Lipschitz domains and exterior domains (see, for example, [1, 2, 7, 11]). Then

we have the following grand maximal function characterizations of H
p(·)
z (Ω)

and H
p(·)
r (Ω) on a strongly Lipschitz domain Ω of Rn.

Theorem 1.3. Let Ω ⊂ Rn be a strongly Lipschitz domain, p(·) ∈ C log(Ω) and
n
n+1 < p− ≤ p+ ≤ 1, where p− and p+ are as in (1.1).

(i) If Ω is bounded, then f ∈ Hp(·)
z (Ω) if and only if f ∈ D′(Rn), supp (f)

⊂ Ω, Mz(f) ∈ Lp(·)(Ω) and 〈f, φ〉 = 0 for each φ ∈ D(Rn) with φ ≡ 1
on Ω. Moreover, there exists a positive constant C independent of f ,
such that

C−1 ‖Mz(f)‖Lp(·)(Ω) ≤ ‖f‖Hp(·)z (Ω)
≤ C ‖Mz(f)‖Lp(·)(Ω) .

(ii) If Ω is unbounded, then f ∈ H
p(·)
z (Ω) if and only if f ∈ D′(Rn),

supp (f) ⊂ Ω and Mz(f) ∈ Lp(·)(Ω). Moreover, there exists a posi-
tive constant C independent of f , such that

C−1 ‖Mz(f)‖Lp(·)(Ω) ≤ ‖f‖Hp(·)z (Ω)
≤ C ‖Mz(f)‖Lp(·)(Ω) .
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(iii) Assume that p∗

p∗−1 < q ≤ ∞. If Ω is bounded, then f ∈ Hp(·)
z (Ω) if and

only if f ∈ D′(Rn), supp (f) ⊂ Ω, M
(q)
z (f) ∈ Lp(·)(Ω) and 〈f, φ〉 = 0

for each φ ∈ D(Rn) with φ ≡ 1 on Ω. Moreover, there exists a positive
constant C independent of f , such that

C−1
∥∥∥M (q)

z (f)
∥∥∥
Lp(·)(Ω)

≤ ‖f‖
H
p(·)
z (Ω)

≤ C
∥∥∥M (q)

z (f)
∥∥∥
Lp(·)(Ω)

.

(iv) Assume that p∗

p∗−1 < q ≤ ∞. If Ω is unbounded, then f ∈ H
p(·)
z (Ω)

if and only if f ∈ D′(Rn), supp (f) ⊂ Ω and M
(q)
z (f) ∈ Lp(·)(Ω).

Moreover, there exists a positive constant C independent of f , such
that

C−1
∥∥∥M (q)

z (f)
∥∥∥
Lp(·)(Ω)

≤ ‖f‖
H
p(·)
z (Ω)

≤ C
∥∥∥M (q)

z (f)
∥∥∥
Lp(·)(Ω)

.

Theorem 1.4. Let Ω ⊂ Rn be a strongly Lipschitz domain, p(·) ∈ C log(Ω) and
n
n+1 < p− ≤ p+ ≤ 1, where p− and p+ are as in (1.1).

(i) Assume that q = (p∗)′ and Ω is bounded. Then f ∈ Hp(·)
r (Ω) if and only

if f is a bounded linear functional on W 1,q
0 (Ω) and Mr(f) ∈ Lp(·)(Ω).

Moreover, there exists a positive constant C independent of f , such that

C−1 ‖Mr(f)‖Lp(·)(Ω) ≤ ‖f‖Hp(·)r (Ω)
≤ C ‖Mr(f)‖Lp(·)(Ω) .

(ii) Assume that p∗

p∗−1 < q ≤ ∞. Then f ∈ H
p(·)
r (Ω) if and only if f

is a bounded linear functional on W 1,q
0 (Ω) and M

(q)
r (f) ∈ Lp(·)(Ω).

Moreover, there exists a positive constant C independent of f , such
that

C−1
∥∥∥M (q)

r (f)
∥∥∥
Lp(·)(Ω)

≤ ‖f‖
H
p(·)
r (Ω)

≤ C
∥∥∥M (q)

r (f)
∥∥∥
Lp(·)(Ω)

.

Remark 1.5. (i) Let p ∈ ( n
n+1 , 1] be a given constant. We point out that, if

p(·) := p, then Theorems 1.3 and 1.4 were established by Chen et al. in [8].
(ii) It is worth pointing out that in the process of the proofs of (i) and (ii)

of Theorem 1.3 are composed by three steps: we first deal with the case Ω
being special Lipschitz, and then the case Ω being bounded, finally Ω being
unbounded (see Section 2 below). Based on Theorems 1.3 and 1.4, [8, Corollar-
ies 2.13 and 2.14] are also true under the setting of variable exponent function

spaces H
p(·)
r (Ω) and H

p(·)
z (Ω).

Our second main result concerning the atomic characterization of the vari-

able local Hardy spaces h
p(·)
r (Ω). We first introduce the notions of hp(·)(Rn)

and h
p(·)
r (Ω) as follows. The following definition was introduced by Tan in

[17, Theorem 1.3].
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Definition 1.6. Let f ∈ S ′(Rn), p(·) ∈ C log(Rn) and x ∈ Rn. Denote by
Mloc(f) the grand maximal function given by

Mloc(f)(x) := sup {|φt ∗ f(x)| : 0 < t < 1, φ ∈ FN (Rn)}

for any fixed large integer N , where FN (Rn) is as in (1.2). A distribution f
on Rn is in the variable local Hardy spaces hp(·)(Rn) if and only if the grand
maximal function Mloc(f) lies in Lp(·)(Rn), i.e., for all f ∈ S ′(Rn),

‖f‖hp(·)(Rn) ∼ ‖Mloc(f)‖Lp(·)(Rn) .

Definition 1.7. Let Ω ⊂ Rn be a proper open subset and p(·) ∈ P(Rn). A

distribution f on Ω is said to belong to the variable local Hardy space h
p(·)
r (Ω)

if f is the restriction to Ω of a distribution F ∈ hp(·)(Rn), namely,

hp(·)r (Ω) : =
{
f ∈ D′(Ω) : there exists an F ∈ hp(·)(Rn) such that F |Ω = f

}
= hp(·)(Rn)/

{
F ∈ hp(·)(Rn) : F = 0 on Ω

}
.

Moreover, for any f ∈ hp(·)r (Ω), the quasi-norm ‖f‖
h
p(·)
r (Ω)

of f in h
p(·)
r (Ω) is

defined by setting

‖f‖
h
p(·)
r (Ω)

:= inf
{
‖F‖hp(·)(Rn) : F ∈ hp(·)(Rn) and F |Ω = f

}
,

where the infimum is taken over all F ∈ hp(·)(Rn) satisfying F = f on Ω.

In what follows, to establish the atomic characterization of the variable local

Hardy space h
p(·)
r (Ω), we introduce the notion of (p(·), q)Ω-atoms.

Definition 1.8. Let Ω be an open subset of Rn, p(·) ∈ P(Ω) and q ∈ (1,∞].
Assume that p− and p are as in (1.1).

(i) A cube Q ⊂ Rn is said to be of type (a) cube if 4Q ⊂ Ω with `(Q) < 1;

a cube Q̃ ⊂ Rn is said to be of type (b) cube if either `(Q) ≥ 1 or

2Q̃ ∩ Ω{ = ∅ and 4Q̃ ∩ Ω{ 6= ∅.
(ii) A measurable function a on Ω is called a type (a) (p(·), q)Ω-atom if

(ii)1 supp (a) ⊂ Q, where supp (a) := {x ∈ Rn : a(x) 6= 0} and Q is a
type (a) cube;

(ii)2 ‖a‖Lq(Ω) ≤ |Q|1/q‖1Q‖−1
Lp(·)(Ω)

;

(ii)3 there exists an integer s ≥ dp(·), where d ≥ dp(·) := min{d ∈ Z+ :
p−(n + d + 1) > n}, such that, for any α ∈ Zn+ with |α| ≤ s,∫
Rn a(x)xαdx = 0.

Moreover, a measurable function b on Ω is called a type (b) (p(·), q)Ω-

atom if supp (b) ⊂ Q̃ with Q̃ being a type (b) cube and ‖b‖Lq(Ω) ≤
|Q̃|1/q‖1Q̃‖

−1
Lp(·)(Ω)

. Furthermore, a measurable function a on Rn is

called a (p(·), q)-atom, if it satisfies the conditions (ii)2, (ii)3 above and
supp (a) ⊂ Q ⊂ Rn.
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For a sequence {λj}∞j=1 ⊂ C and a cubes sequence {Qj}∞j=1 of the supports
of atoms, define that

A
(
{λj}∞j=1, {Qj}∞j=1

)
:=

∥∥∥∥∥∥∥

∞∑
j=1

(
|λj |1Qj

‖1Qj‖Lp(·)(Ω)

)p
1/p
∥∥∥∥∥∥∥
Lp(·)(Ω)

.

Then we have the atomic characterization of the variable local Hardy space

h
p(·)
r (Ω) as follows.

Theorem 1.9. Assume that Ω ⊂ Rn is a bounded Lipschitz domain. Let
p(·) ∈ C log(Ω) with n

n+1 < p− ≤ p+ ≤ 1 and q ∈ (1,∞], where p− and p+ are

as in (1.1). Then, f ∈ hp(·)r (Ω) if and only if there exist sequences {λj}∞j=1,
{κj}∞j=1 ⊂ C, type (a) (p(·), q)Ω-atoms {aj}∞j=1, and type (b) (p(·), q)Ω-atoms

{bj}∞j=1 such that f =
∑∞
j=1 λjaj +

∑∞
j=1 κjbj in D′(Rn), and

A
(
{λj}∞j=1, {Qj}∞j=1

)
+A

(
{κj}∞j=1, {Q̃j}∞j=1

)
<∞,

where {Qj}∞j=1 and {Q̃j}∞j=1, respectively, denote the supports of {aj}∞j=1 and

{bj}∞j=1. Moreover, for any given f ∈ hp(·)r (Ω), there exists a positive constant
C independent of f , such that

C−1‖f‖
h
p(·)
r (Ω)

≤A
(
{λj}∞j=1, {Qj}∞j=1

)
+A

(
{κj}∞j=1, {Q̃j}∞j=1

)
≤C‖f‖

h
p(·)
r (Ω)

.

Remark 1.10. When p(·) := p ∈ ( n
n+1 , 1], then Theorem 1.9 is reduced to

[7, Theorem 2.7].

The layout of this article is as follows. Section 2 is devoted to the proofs of
Theorems 1.3 and 1.4. In Section 3, we give the proof of Theorem 1.9.

Finally, we make some conventions on notation. Let N := {1, 2, . . .} and
Z+ := {0} ∪ N. Throughout the whole article, we denote by C a positive
constant which is independent of the main parameters, but it may vary from
line to line. The symbol f . g means that f ≤ Cg. If f . g and g . f , then we
write f ∼ g. Denote by Q(cQ, `(Q)) the cube in Rn with center cQ ∈ Rn and
sidelength `(Q) ∈ (0,∞), and α ∈ (0,∞), let αQ := Q(cQ, α`(Q)). For any

measurable subset E of Rn, we denote the set Rn\E by E{ and its characteristic
function by 1E . Moreover, denote by S(Rn) the space of all Schwartz functions
and S ′(Rn) its dual space (namely, the space of all tempered distributions). For
any sets E, F ⊂ Rn and z ∈ Rn, let dist(E, F ) := inf{|x− y| : x ∈ E, y ∈ F}
and dist(z, E) := inf{|z − x| : x ∈ E}. Finally, we also use W 1, q

0 (Ω) to
denote the collection of elements in Sobolev spacesW 1, q(Ω) with zero boundary
values. For q ∈ (0, n), let q∗ be its Sobolev conjugate index nq

n−q . For any given

p ∈ [1,∞], we denote by p′ its conjugate exponent, namely, 1/p+ 1/p′ = 1.
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2. Proofs of Theorems 1.3 and 1.4

In this section, we give the proofs of Theorems 1.3 and 1.4. We begin with
recall some basic properties of variable Lebesgue space Lp(·)(Rn). The following
Lemmas 2.1 and 2.2 come from [15, Lemma 2.2] and [9, 18], respectively.

Lemma 2.1. Let p(·) ∈ C log(Rn) and 0 < p− ≤ p+ < ∞, where p− and p+

are as in (1.1).

(i) For all cubes Q = Q(cQ, `(Q)) with cQ ∈ Rn and `(Q) ≤ 1, we have

|Q|1/p−(Q) . |Q|1/p+(Q). In particular, we have

|Q|1/p−(Q) ∼ |Q|1/p+(Q) ∼ |Q|1/p(cQ) ∼ ‖1Q‖Lp(·)(Rn);

(ii) For all cubes Q = Q(cQ, `(Q)) with cQ ∈ Rn and `(Q) ≥ 1, we have

‖1Q‖Lp(·)(Rn) ∼ |Q|1/p∞ .

Here the implicit constants in ∼ do not depend on cQ and `(Q) > 0.

Lemma 2.2. Let p(·) ∈ P(Ω). Then, for any s ∈ (0,∞), λ ∈ C, and f ∈
Lp(·)(Ω),

‖|f |s‖Lp(·)(Ω) = ‖f‖sLsp(·)(Ω) and ‖λf‖Lp(·)(Ω) = |λ|‖f‖Lp(·)(Ω).

Recall that, for any f ∈ L1
loc (Ω) and x ∈ Ω, the Hardy–Littlewood maximal

function M(f) is defined by setting

M(f)(x) := sup
B3x

1

|B|

∫
B

|f(y)| dy,

where the supremum is taken over all balls B ⊂ Ω satisfying B 3 x.

Lemma 2.3. Let Ω be an open subset of Rn and r ∈ (1,∞]. Assume that
p(·) ∈ C log(Ω) satisfies 1 < p− ≤ p+ < ∞, where p− and p+ are as in (1.1).
Then there exists a positive constant C such that, for any sequence {fk}k∈N of
measurable functions on Ω,∥∥∥∥∥∥

{∑
k∈N

[M (fk)]
r

}1/r
∥∥∥∥∥∥
Lp(·)(Ω)

≤ C

∥∥∥∥∥∥
(∑
k∈N
|fk|r

)1/r
∥∥∥∥∥∥
Lp(·)(Ω)

with the usual modification made when r =∞.

We point out that in the case of metric measurable spaces of homogeneous
type, Lemma 2.3 was established in [20, Theorem 2.7]. Moreover, the proof of
[20, Theorem 2.7] is also valid in the case of Lemma 2.3 and we omit the details
here. The following remark is just [21, Remark 2.8].

Remark 2.4. Let k ∈ N and p(·) ∈ C log(Rn). Then, from Lemmas 2.2 and 2.3,
and the fact that, for any cubes Q of Rn, r ∈ (0, p), 12kQ . 2kn/r[M(1Q)]1/r,
where p is as in (1.1) and M denotes the Hardy–Littlewood maximal function,
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we deduce that there exists a positive constant C such that, for any {λj}∞j=1 ⊂
C and cubes {Qj}∞j=1 of Rn,∥∥∥∥∥∥∥


∞∑
j=1

[
|λj |12kQj

‖1Qj‖Lp(·)(Rn)

]p
1/p
∥∥∥∥∥∥∥
Lp(·)(Rn)

≤ C2kn/rA
(
{λj}∞j=1, {Qj}∞j=1

)
.

From the proof of [12, Theorem 1.12(i)] or see the proof of [8, lemma 2.3]

with regular modification, it follows that the variable Hardy space H
p(·)
r (Ω)

admits the following atomic decomposition.

Lemma 2.5. Let p(·) ∈ C log(Ω), n
n+1 < p− ≤ p+ ≤ 1 and q ∈ (1,∞], where

p− and p+ are as in (1.1). Assume that Ω ⊂ Rn is a strongly Lipschitz domain.

Then, for each f ∈ Hp(·)
r (Ω), there exist type (a) (p(·), q)Ω-atoms {aj}∞j=1 and

type (b) (p(·), q)Ω-atoms {bj}∞j=1 such that f =
∑∞
j=1 λjaj +

∑∞
j=1 κjbj in

D′(Rn), and

A
(
{λj}∞j=1, {Qj}∞j=1

)
+A

(
{κj}∞j=1, {Q̃j}∞j=1

)
≤ C‖f‖

H
p(·)
r (Ω)

,

where {Qj}∞j=1 and {Q̃j}∞j=1, respectively, denote the supports of {aj}∞j=1 and
{bj}∞j=1, and the positive constant C is independent of f .

Lemma 2.6. Let Ω be a strongly Lipschitz domain, p(·) ∈ C log(Ω), n
n+1 <

p− ≤ p+ ≤ 1 and q = p∗

p∗−1 , where p− and p+ are as in (1.1). Then each

f ∈ Hp(·)
r (Ω) induces a bounded linear functional on W 1,q

0 (Ω) and there exists

a positive constant C such that, for all f ∈ Hp(·)
r (Ω) and g ∈W 1,q

0 (Ω),

|〈f, g〉| ≤ C‖f‖
H
p(·)
r (Ω)

‖g‖W 1,q
0 (Ω).

Proof. Since D(Ω) is dense in W 1,q
0 (Ω), we only need to show that Lemma 2.6

holds true for each φ ∈ D(Ω).

If p− = p+ = 1, then q = (p∗)′ = n. For each f ∈ Hp(·)
r (Ω), there exists

F ∈ H1(Rn) such that F |Ω = f and ‖F‖H1(Rn) ≤ 2‖f‖H1
r (Ω). By the duality of

H1(Rn) and BMO(Rn), the embedding of W 1,n(Rn) ⊂ BMO(Rn) and similar
to that of (2.2) in the proof of [8, Lemma 2.4], we know that∣∣∣∣∫

Ω

f(x)φ(x)dx

∣∣∣∣ . ‖f‖H1
r (Ω)‖φ‖W 1,n(Ω).(2.1)

If n
n+1 < p− ≤ p+ < 1, then q = (p∗)′ > n. For each f ∈ H

p(·)
r (Ω),

from Lemma 2.5, we deduce that there exist two sequences {λj}∞j=1 ⊂ C and
{κj}∞j=1 ⊂ C, a sequence {aj}∞j=1 of type (a) (p(·), p∗)Ω-atoms and a sequence

{bj}∞j=1 of type (b) (p(·), p∗)Ω-atoms such that f =
∑∞
j=1 λjaj +

∑∞
j=1 κjbj in
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D′(Rn). Moreover, by [20, Lemma 5.9], we know that

∞∑
j=1

|λj |+
∞∑
j=1

|κj | . A
(
{λj}∞j=1, {Qj}∞j=1

)
+A

(
{κj}∞j=1, {Q̃j}∞j=1

)
.(2.2)

Then for each type (a) (p(·), p∗)Ω-atom aj , from the moment condition of aj ,

supp (aj) ⊂ Qj , ‖aj‖Lp∗ (Ω) ≤ |Qj |1/p
∗‖1Qj‖−1

Lp(·)(Ω)
, Lemma 2.1(i), p∗ = np−

n−p− ,

and repeating the proof of [8, (2.3)], we deduce that∣∣∣∣∫
Ω

aj(x)φ(x)dx

∣∣∣∣ . `(Qj)∫ 1

0

‖aj‖Lp∗ (Ω)

[∫
Ω

|∇φ(x)|q dx
]1/q

t−n/qdt

. `(Qj) |Qj |1/p
∗ ∥∥1Qj∥∥−1

Lp(·)(Ω)

∫ 1

0

t−n/qdt ‖∇φ‖Lq(Ω)

. [`(Qj)]
1+n/p∗ |Qj |−1/p− ‖φ‖W 1,q(Ω) ∼ ‖φ‖W 1,q(Ω).(2.3)

For each type (b) (p(·), p∗)Ω-atom bj , by supp (bj) ⊂ Q̃j ,

‖bj‖Lp∗ (Ω) ≤ |Q̃j |1/p
∗
‖1Q̃j‖

−1
Lp(·)(Ω)

,

Lemma 2.1(ii), p∗ = np−
n−p− , and a proof similar to those of [8, (2.4)], we know

that∣∣∣∣∫
Ω

bj(x)φ(x)dx

∣∣∣∣ . `(Q̃j)∫ 1

0

‖bj‖Lp∗ (Ω) ‖∇φ‖Lq(Ω)t
−n/qdt

. `(Q̃j)
∣∣∣Q̃j∣∣∣1/p∗ ∥∥∥1Q̃j∥∥∥−1

Lp(·)(Ω)

∫ 1

0

t−n/qdt ‖∇φ‖Lq(Ω)

.
[
`(Q̃j)

]1+n/p∗

|Qj |−1/p∞ ‖φ‖W 1,q(Ω)

.
[
`(Q̃j)

]n/p−−n/p∞
‖φ‖W 1,q(Ω) . ‖φ‖W 1,q(Ω).(2.4)

Combining (2.2), (2.3), (2.4), and Lemma 2.5, we obtain

|〈f, φ〉| ≤
∞∑
j=1

|〈λjaj , φ〉|+
∞∑
j=1

|〈κjbj , φ〉|

.

 ∞∑
j=1

|λj |+
∞∑
j=1

|κj |

 ‖φ‖W 1,q(Ω) . ‖f‖Hp(·)r (Ω)
‖φ‖W 1,q(Ω),

which, together with (2.1) and the density of D(Ω) in W 1,q
0 (Ω), finishes the

proof of Lemma 2.6. �

We first prove a weaker version of Theorem 1.3(i) as follows.

Lemma 2.7. Let Ω be a strongly Lipschitz domain, p(·) ∈ C log(Ω) and n
n+1 <

p− ≤ p+ ≤ 1, where p− and p+ are as in (1.1). Then f ∈ Hp(·)
z (Ω) if and only
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if f ∈ D′(Rn), supp (f) ⊂ Ω and Mz(f) ∈ Lp(·)(Rn). Moreover, there exists a
positive constant C independent of f , such that

C−1 ‖Mz(f)‖Lp(·)(Rn) ≤ ‖f‖Hp(·)z (Ω)
≤ C ‖Mz(f)‖Lp(·)(Rn) .

Proof. Let f ∈ D′(Rn), supp (f) ⊂ Ω and Mz(f) ∈ Lp(·)(Rn). Suppose that

ψ ∈ D(Rn) is a radial function such that supp (ψ) ⊂ Q := Q(~0n, 1) and∫
Rn ψ(x)dx = 1, where and in what follows, ~0n denotes the origin of Rn. Pro-

ceeding as in the proof of [8, Proposition 2.6], we know that

sup
t∈(0,∞)

|f ∗ ψt(x)| .Mz(f)(x),

which, together with (1.3) and Definition 1.1, implies that f ∈ Hp(·)(Rn).

Notice that supp (f) ⊂ Ω, this implies that f ∈ H
p(·)
z (Ω) and ‖f‖

H
p(·)
z (Ω)

.

‖Mz(f)‖Lp(·)(Rn).

On the contrary, let f ∈ Hp(·)
z (Ω). By Definition 1.2 and [15, Theorem 4.6

and Definition 1.5], we conclude that f =
∑∞
j=1 λjaj is an atomic decomposi-

tion in Hp(·)(Rn), where {aj}∞j=1 are (p(·),∞)-atoms and {λj}∞j=1 ⊂ C satisfy

‖f‖
H
p(·)
z (Ω)

∼ ‖f‖Hp(·)(Rn) ∼ A
(
{λj}∞j=1, {Qj}∞j=1

)
.

Thus, we have

‖Mz(f)‖Lp(·)(Rn)

≤

∥∥∥∥∥∥
∞∑
j=1

|λj |Mz(aj)14Qj

∥∥∥∥∥∥
Lp(·)(Rn)

+

∥∥∥∥∥∥
∞∑
j=1

|λj |Mz(aj)1(4Qj){

∥∥∥∥∥∥
Lp(·)(Rn)

=: I + II.(2.5)

For the term I, by x ∈ 4Qj and a (p(·),∞)-atom aj with supp (aj) ⊂ Qj , we
have

Mz(aj)(x) = sup
φ∈Fx(Ω)

∣∣∣∣∫
Rn
aj(y)φ(y)dy

∣∣∣∣ ≤ sup
φ∈Fx(Ω)

‖φ‖L∞(Rn)

∫
Ω∩Q
|aj(y)| dy

≤ sup
φ∈Fx(Ω)

1

|Q|

∫
Ω∩Q
|aj(y)| dy ≤ ‖aj‖L∞(Rn) ≤

∥∥1Qj∥∥−1

Lp(·)(Rn)
,

which, together with Remark 2.4, implies that

I .

∥∥∥∥∥∥∥

∞∑
j=1

[
|λj |14Qj

‖1Qj‖Lp(·)(Rn)

]p
1/p
∥∥∥∥∥∥∥
Lp(·)(Rn)

. A
(
{λj}∞j=1, {Qj}∞j=1

)
∼ ‖f‖

H
p(·)
z (Ω)

.(2.6)
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For II, from x /∈ 4Qj , φ ∈ Fx(Ω) with supp (φ) ⊂ Q, and the fact that∫
Rn aj(y)dy = 0, we deduce that∣∣∣∣∫

Rn
aj(y)φ(y)dy

∣∣∣∣ =

∣∣∣∣∣
∫
Qj

aj(y)
[
φ(y)− φ

(
cQj
)]
dy

∣∣∣∣∣
. ‖aj‖L∞(Rn) [`(Qj)]

n+1 ‖∇φ‖L∞(Rn)

. ‖∇φ‖L∞(Rn) [`(Qj)]
n+1 ∥∥1Qj∥∥−1

Lp(·)(Rn)
.(2.7)

If supp (aj)∩ supp (φ) = ∅, then
∫
Rn aj(y)φ(y)dy = 0. If supp (aj)∩ supp (φ) 6=

∅, then Qj ∩ Q 6= ∅. Notice that x /∈ 4Qj and x ∈ Q, and hence 3
2`(Qj) ≤

|x− y| < `(Q) for each y ∈ Qj ∩Q, which implies that∣∣x− cQj ∣∣ ≤ |x− y|+ ∣∣y − cQj ∣∣ . `(Q).

By this and (2.7), we find that∣∣∣∣∫
Rn
aj(y)φ(y)dy

∣∣∣∣ . [`(Qj)]
n+1

[`(Q)]n+1

∥∥1Qj∥∥−1

Lp(·)(Rn)
.

[`(Qj)]
n+1

|x− cQj |n+1

∥∥1Qj∥∥−1

Lp(·)(Rn)
,

which implies that, for any x /∈ 4Qj ,

Mz(aj)(x) .
[`(Qj)]

n+1

|x− cQj |n+1

∥∥1Qj∥∥−1

Lp(·)(Rn)

.
[
M
(
1Qj

)
(x)
](n+1)/n ∥∥1Qj∥∥−1

Lp(·)(Rn)
.

From this, θ := (n + 1)/n, Lemmas 2.2 and 2.3, and Remark 2.4, we deduce
that

II .

∥∥∥∥∥∥
∞∑
j=1

|λj |
‖1Qj‖Lp(·)(Rn)

[
M
(
1Qj

)]θ∥∥∥∥∥∥
Lp(·)(Rn)

∼

∥∥∥∥∥∥∥

∞∑
j=1

|λj |
‖1Qj‖Lp(·)(Rn)

[
M
(
1Qj

)]θ
1/θ
∥∥∥∥∥∥∥
θ

Lθp(·)(Rn)

.

∥∥∥∥∥∥∥
 ∞∑
j=1

|λj |
‖1Qj‖Lp(·)(Rn)

(
1Qj

)θ1/θ
∥∥∥∥∥∥∥
θ

Lθp(·)(Rn)

∼

∥∥∥∥∥∥
∞∑
j=1

|λj |1Qj
‖1Qj‖Lp(·)(Rn)

∥∥∥∥∥∥
Lp(·)(Rn)

. ‖f‖
H
p(·)
z (Ω)

.(2.8)

Combining (2.5) (2.6), and (2.8), we obtain the desired result. This finishes
the proof of Lemma 2.7. �
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In consideration of Lemma 2.7, in order to prove (i) and (ii) of Theorem 1.3,
it remains to prove that ‖Mz(f)‖Lp(·)(Rn) ∼ ‖Mz(f)‖Lp(·)(Ω). To do this, we

need the following lemma, which is a slight modification of [8, Lemma 2.7], with
Lp(Ω) norm therein replaced by Lp(·)(Ω) norm here, the details being omitted.

Lemma 2.8. Let Ω be a special Lipschitz domain, p(·) ∈ C log(Ω) and n
n+1 <

p− ≤ p+ ≤ 1, where p− and p+ are as in (1.1). Then f ∈ Hp(·)
z (Ω) if and only

if f ∈ D′(Rn), supp (f) ⊂ Ω and Mz(f) ∈ Lp(·)(Ω). Moreover, there exists a
positive constant C independent of f , such that

C−1 ‖Mz(f)‖Lp(·)(Ω) ≤ ‖f‖Hp(·)z (Ω)
≤ C ‖Mz(f)‖Lp(·)(Ω) .

Now let us deal with the general case of Ω. In what follows, for each strongly
Lipschitz domain Ω and ε ∈ (0, ∞), we assume Ωε := {x ∈ Rn : dist(x, Ω) < ε}.
The following lemma is an analogue of [8, Lemma 2.8], since the proof is regular,
its proof is omitted.

Lemma 2.9. Let Ω be a strongly Lipschitz domain, p(·) ∈ C log(Ω) and n
n+1 <

p− ≤ p+ ≤ 1, where p− and p+ are as in (1.1). If f ∈ D′(Rn), supp (f) ⊂ Ω
and Mz(f) ∈ Lp(·)(Ω). Then there exist positive constants C and ε independent
of f , such that

‖Mz(f)‖Lp(·)(Ωε\Ω) ≤ C‖Mz(f)‖Lp(·)(Ω).

By [9, Corollary 2.27], we have the following embedding relationship between
the variable and classical Lebesgue spaces.

Lemma 2.10. Given Ω and p(·) : Ω → [1,∞), let |Ω| < ∞. Then there exist
constants c1, c2 > 0 such that

c1‖f‖Lp− (Ω) ≤ ‖f‖Lp(·)(Ω) ≤ c2‖f‖Lp+ (Ω),

where 1 ≤ p− ≤ p+ <∞. In particular, given any Ω, if f ∈ Lp(·)(Ω), then f is
locally integrable.

The following Lemma 2.11 extends [8, Lemma 2.9] from constant exponent
case to the variable exponent case.

Lemma 2.11. Let Ω be a bounded Lipschitz domain, p(·) ∈ C log(Ω) and n
n+1 <

p− ≤ p+ ≤ 1, where p− and p+ are as in (1.1). Then f ∈ Hp(·)
z (Ω) if and only

if f ∈ D′(Rn), supp (f) ⊂ Ω, Mz(f) ∈ Lp(·)(Ω) and 〈f, φ〉 = 0 for each
φ ∈ D(Rn) with φ ≡ 1 on Ω. Moreover, there exists a positive constant C
independent of f , such that

C−1 ‖Mz(f)‖Lp(·)(Ω) ≤ ‖f‖Hp(·)z (Ω)
≤ C ‖Mz(f)‖Lp(·)(Ω) .

Proof. Let f ∈ Hp(·)
z (Ω). From the fact that f ∈ Hp(·)(Rn) with supp (f) ⊂ Ω,

〈f, φ〉 = 0 for each φ ∈ D(Rn) with φ ≡ 1 on Ω and Lemma 2.7, it follows that
‖Mz(f)‖Lp(·)(Ω) . ‖f‖Hp(·)z (Ω)

.
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On the contrary, by Lemma 2.7, we know that ‖f‖
H
p(·)
z (Ω)

.‖Mz(f)‖Lp(·)(Rn),

which implies that, to prove ‖f‖
H
p(·)
z (Ω)

. ‖Mz(f)‖Lp(·)(Ω), it suffices to show

‖Mz(f)‖Lp(·)(Rn) . ‖Mz(f)‖Lp(·)(Ω). This, further implies that, it suffices to

show ‖Mz(f)‖Lp(·)(Ω{) . ‖Mz(f)‖Lp(·)(Ω).

For x ∈ Ωε\Ω, from Lemma 2.9, we deduce that there exists an ε ∈ (0, ∞)
such that

‖Mz(f)‖Lp(·)(Ωε\Ω) . ‖Mz(f)‖Lp(·)(Ω).(2.9)

For x ∈ 2B\Ωε, we choose a ball B := B(~0n, rB) with rB large enough such
that Ωε ⊂ B. For any x ∈ 2B\Ωε and any x̃ ∈ Ω, by the proof of [8, Lemma
2.9], we know that, Mz(f)(x) .Mz(f)( x̃ ) for each x ∈ 2B\Ωε, and hence

1

|2B\Ωε|

∫
2B\Ωε

[
|Mz(f)(x)|

λ

]p(x)

dx

≤ sup
x∈2B\Ωε

[
|Mz(f)(x)|

λ

]p(x)

. inf
x∈Ω

[
|Mz(f)(x)|

λ

]p(x)

.
1

|Ω|

∫
Ω

[
|Mz(f)(x)|

λ

]p(x)

dx,

which further implies that, for any x ∈ 2B\Ωε,

‖Mz(f)‖Lp(·)(2B\Ωε) = inf

{
λ ∈ (0, ∞) :

∫
2B\Ωε

[
|Mz(f)(x)|

λ

]p(x)

dx ≤ 1

}

. inf

{
λ ∈ (0, ∞) :

∫
Ω

[
|Mz(f)(x)|

λ

]p(x)

dx ≤ 1

}
∼ ‖Mz(f)‖Lp(·)(Ω).(2.10)

For x ∈ (2B){, let φ ∈ Fx(Ω) with supp (φ) ⊂ Q and x ∈ Q. If Q ∩ Ω = ∅,
then 〈f, φ〉 = 0. Otherwise, we have |x| . `(Q) and hence [`(Q)]−n−1 .
|x|−n−1. Thus, by choosing I to be a cube centered at origin such that 2B ⊂ I
and `(I) ∼ diam(Ω) (see, [8, Lemma 2.9]), where and in what follows, diam(Ω)
denotes the diameter of Ω, namely, diam(Ω) := sup{|x − y| : x, y ∈ Ω} (see,
for example, [1]), and similarly to the proof of [8, Lemma 2.9], we see that

Mz(f)(x) .
|I|diam(Ω)

|x|n+1
inf
y∈Ω

Mz(f)(y)

.
|I|diam(Ω)

|x|n+1

1

‖1Ω‖Lp(·)(Ω)

‖Mz(f)‖Lp(·)(Ω),

which, together with Lemmas 2.2 and 2.10, n
n+1 < p+ ≤ 1, further implies that

‖Mz(f)‖Lp(·)((2B){) .
|I|diam(Ω)

‖1Ω‖Lp(·)(Ω)

∥∥∥∥ 1

|x|n+1

∥∥∥∥
Lp(·)((2B){)

‖Mz(f)‖Lp(·)(Ω)
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. [diam(Ω)]
n+1 ‖(1Ω)p−‖−1/p−

Lp(·)/p− (Ω)

×
∥∥∥|x|(−n−1)p−

∥∥∥1/p−

Lp(·)/p− ((2B){)
‖Mz(f)‖Lp(·)(Ω)

. ‖(1Ω)p−‖−1/p−

Lp+/p− (Ω)

∥∥∥|x|(−n−1)p−
∥∥∥1/p−

Lp+/p− ((2B){)

× ‖Mz(f)‖Lp(·)(Ω)

.

[∫ ∞
2rB

∫
|x|=λ

[
|x|(−n−1)

]p+
λn−1 dxdλ

]1/p+

× ‖Mz(f)‖Lp(·)(Ω)

. ‖Mz(f)‖Lp(·)(Ω).(2.11)

Combining the estimates of (2.9), (2.10) and (2.11), we obtain the desired
inequality. This finishes the proof of Lemma 2.11. �

To prove Theorem 1.3(ii), we need the following Lemma 2.12, its proof is a
repetition of the argument in [8, Lemma 2.10] except that [8, Lemma 2.7] is
modified to be Lemma 2.8 and we omit the details here.

Lemma 2.12. Let Ω be an unbounded strongly Lipschitz domain, p(·)∈C log(Ω)

and n
n+1 < p− ≤ p+ ≤ 1, where p− and p+ are as in (1.1). Then f ∈ Hp(·)

z (Ω)

if and only if f ∈ D′(Rn), supp (f) ⊂ Ω and Mz(f) ∈ Lp(·)(Ω). Moreover,
there exists a positive constant C independent of f , such that

C−1 ‖Mz(f)‖Lp(·)(Ω) ≤ ‖f‖Hp(·)z (Ω)
≤ C ‖Mz(f)‖Lp(·)(Ω) .

Proofs of (i) and (ii) of Theorem 1.3. By Lemmas 2.11 and 2.12, we obtain
that the desired of (i) and (ii) of Theorem 1.3, respectively. This finishes
the proofs of (i) and (ii) of Theorem 1.3. �

Proofs of (iii) and (iv) of Theorem 1.3. We only prove for Theorem 1.3(iii),
since the proof of Theorem 1.3(iv) is analogous to that of Theorem 1.3(iii)
and we omit the details here. From the fact that Fx(Ω) ⊂ F qx (Ω), it follows

that Mz(f)(x) ≤ M
(q)
z (f)(x) for all x ∈ Rn, which, combined with Theorem

1.3(i), further implies that

‖f‖
H
p(·)
z (Ω)

. ‖Mz(f)‖Lp(·)(Ω) .
∥∥∥M (q)

z (f)
∥∥∥
Lp(·)(Ω)

.

On the contrary, let Ω be bounded and f ∈ Hp(·)
z (Ω). Then f ∈ Hp(·)(Rn)

with supp (f) ⊂ Ω, for each φ ∈ D(Rn) with φ ≡ 1 on Ω, it follows that 〈f, φ〉 =
0. Suppose that f =

∑∞
j=1 λjaj is an atomic decomposition inHp(·)(Rn), where

{aj}∞j=1 are (p(·),∞)-atoms and {λj}∞j=1 ⊂ C satisfy

‖f‖
H
p(·)
z (Ω)

∼ ‖f‖Hp(·)(Rn) ∼ A
(
{λj}∞j=1, {Qj}∞j=1

)
.
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Now let us to prove that M
(q)
z (f) ∈ Lp(·)(Ω). For x ∈ 4Qj and a (p(·),∞)-

atom aj with supp (aj) ⊂ Qj , by the proof of [8, (2.18)] and ‖a‖L∞(Rn) ≤
‖1Qj‖−1

Lp(·)(Rn)
, we find that, for any x ∈ 4Qj ,

M (q)
z (aj) (x) ≤ ‖aj‖L∞(Rn) ≤

∥∥1Qj∥∥−1

Lp(·)(Rn)
.(2.12)

For x /∈ 4Qj and φ ∈ Fx(Ω) with supp (φ) ⊂ Q, from the fact that
∫
Rn aj(y)dy

= 0, ‖a‖L∞(Rn) ≤ ‖1Qj‖−1
Lp(·)(Rn)

, and similar to that of [8, (2.20)], it follows

that, for any x /∈ 4Qj ,

M (q)
z (aj) (x) .

[
`(Qj)

|x− cQj |

]1+n/q′ ∥∥1Qj∥∥−1

Lp(·)(Rn)

.
[
M
(
1Qj

)
(x)
](1/n+1/q′)∥∥1Qj∥∥−1

Lp(·)(Rn)
.(2.13)

Moreover, by the fact that p∗ = np−
n−p− and p∗

p∗−1 < q <∞, we know that

θ := 1/n+ 1/q′ = 1/n+ 1− 1/q > 1/n+ 1/p∗ = 1/p− ≥ 1.

Thus, by (2.12), (2.13) with θ > 1, and using the same estimates of (2.6) and

(2.8), we find that ‖M (q)
z (f)‖Lp(·)(Ω) . ‖f‖Hp(·)z (Ω)

<∞. This finishes the proof

of Theorem 1.3(iii). �

Proof of Theorem 1.4(i). Let f ∈ Hp(·)
r (Ω). From the definition of H

p(·)
r (Ω), we

choose an extension F of f on Rn such that ‖F‖Hp(·)(Rn) ≤ 2‖f‖
H
p(·)
r (Ω)

. More-

over, by Lemma 2.6 and the proof of [8, Theorem 1.2], we conclude that, for all
x ∈ Ω, Mr(f)(x) .Mz(F )(x), and hence ‖Mr(f)‖Lp(·)(Ω) . ‖Mz(F )‖Lp(·)(Rn),
which, combined with Lemma 2.7, implies that

‖Mr(f)‖Lp(·)(Ω) . ‖Mz(F )‖Lp(·)(Rn) . ‖F‖Hp(·)(Rn) . ‖f‖Hp(·)r (Ω)
.

On the other hand, proceeding as in the proof of [12, Theorem 1.12], we
know that ‖f‖

H
p(·)
r (Ω)

. ‖f‖Hp(·)(Ω) when Ω is a bounded Lipschitz domain.

Furthermore, by the proof of [12, Theorem 1.5], we find that ‖f‖Hp(·)(Ω) .
‖Mr(f)‖Lp(·)(Ω) when Ω is a proper open subset. Thus, we have ‖f‖

H
p(·)
r (Ω)

.

‖Mr(f)‖Lp(·)(Ω). This finishes the proof of Theorem 1.4(i). �

Proof of Theorem 1.4(ii). From the fact that Gx(Ω) ⊂ Gqx(Ω), it follows that

Mr(f)(x) ≤ M
(q)
r (f)(x) for all x ∈ Ω, which together with Theorem 1.4(i),

implies that ‖f‖
H
p(·)
r (Ω)

. ‖M (q)
r (f)‖Lp(·)(Ω). Conversely, by the proofs of [8,

Theorem 2.12] and Theorem 1.3(iii), we can get the desired results and leave
the details to the interested readers. This completes the proof of Theorem
1.4(ii). �
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3. Proof of Theorem 1.9

In this section, we give the proof of Theorem 1.9. Let us recall the fol-
lowing notion of local (p(·), q)-atoms (see [17, Definitions 1.3 and 1.4]).

Definition 3.1. Let p(·) ∈ P(Rn) and q ∈ (1,∞]. Assume that p− and p are
as in (1.1). Fix an integer d ≥ dp(·) := min{d ∈ Z+ : p−(n + d + 1) > n}. A
measurable function a on Rn is called a type (a) local (p(·), q)-atom if there
exists a cube Q such that

(i) supp (a) ⊂ Q with 0 < `(Q) < 1;
(ii) ‖a‖Lq(Rn) ≤ |Q|1/q‖1Q‖−1

Lp(·)(Rn)
;

(iii)
∫
Rn a(x)xαdx = 0 for |α| ≤ d.

Moreover, a measurable function b on Rn is called a type (b) local (p(·), q)-atom

if supp (b) ⊂ Q̃ with `(Q̃) ≥ 1 and ‖b‖Lq(Rn) ≤ |Q̃|1/q‖1Q̃‖
−1
Lp(·)(Rn)

.

For sequences of {λj}∞j=1 ⊂ C and cubes {Qj}∞j=1, define that

A′
(
{λj}∞j=1, {Qj}∞j=1

)
:=

∥∥∥∥∥∥∥
 ∞∑
j=1

(
|λj |1Qj

‖1Qj‖Lp(·)(Rn)

)p1/p
∥∥∥∥∥∥∥
Lp(·)(Rn)

.

Proof of Theorem 1.9. Let f ∈ h
p(·)
r (Ω). Then by the proof of [12, Theorem

1.12(i)], we have the atomic decomposition of h
p(·)
r (Ω). Conversely, this part

of the proof largely follows [7, Theorem 2.7] and we include it here primarily
for the reader’s convenience. Then, we know that there exist two sequences
{λj}∞j=1 ⊂ C and {κj}∞j=1 ⊂ C, a sequence {aj}∞j=1 of type (a) (p(·), q)Ω-atoms
and a sequence {bj}∞j=1 of type (b) (p(·), q)Ω-atoms such that

f =

∞∑
j=1

λjaj +

∞∑
j=1

κjbj in D′(Rn),(3.1)

and

A
(
{λj}∞j=1, {Qj}∞j=1

)
+A

(
{κj}∞j=1, {Q̃j}∞j=1

)
<∞,(3.2)

where {Qj}∞j=1 and {Q̃j}∞j=1, respectively, denote the supports of {aj}∞j=1 and
{bj}∞j=1. The type (a) (p(·), q)Ω-atoms aj in (3.1) are already type (a) local
(p(·), q)-atoms and

A′
(
{λj}∞j=1, {Qj}∞j=1

)
= A

(
{λj}∞j=1, {Qj}∞j=1

)
<∞,(3.3)

hence we let those atoms stand unchanged. For type (b) (p(·), q)Ω-atoms bj in
(3.1), there are two different cases.

Case 1: If bj is a type (b) (p(·), q)Ω-atom as in (3.1) and is supported on a

type (b) cube Q with `(Q) < 1, then we find a cube Q̃ ⊂ (Ω){ which has the
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same size as Q. We further consider the extension (bj)1 of the function bj as
follows:

(bj)1 :=


bj(x), for x ∈ Q,

− 1

|Q|

∫
Q

bj(y) dy, for x ∈ Q̃.

From this, we deduce that the function (bj)1 is supported on Q ∪ Q̃. Since

the distance of Q and Q̃ to ∂Ω are comparable to `(Q), we may find another

cube Q̂ such that (Q ∪ Q̃) ⊂ Q̂ and |Q| ≤ |Q̂| . |Q|. By this and the Hölder
inequality, we know that∥∥(bj)1

∥∥
Lq(Rn)

≤ ‖bj‖Lq(Rn) +

∥∥∥∥(− 1

|Q|

∫
Q

bj(y) dy

)
1Q̃

∥∥∥∥
Lq(Rn)

≤ ‖bj‖Lq(Rn) +
∣∣∣Q̃ ∣∣∣1/q |Q|−1

∣∣∣∣∫
Q

bj(y) dy

∣∣∣∣
≤ ‖bj‖Lq(Rn) +

∣∣∣Q̃ ∣∣∣1/q |Q|−1+1/q′ ‖bj‖Lq(Rn) .
|Q̂|1/q

‖1Q̂‖Lp(·)(Rn)

and ∫
Rn

(bj)1 (x) dx =

∫
Q

bj(x) dx−
∫
Q̃

(
1

|Q|

∫
Q

bj(x) dx

)
1Q̃(y) dy

=

∫
Q

bj(x) dx−
∣∣∣Q̃ ∣∣∣ |Q|−1

∫
Q

bj(x) dx = 0 ,

which further implies that (bj)1 is an acceptable type (a) local (p(·), q)-atom
in Rn and

A′ ({κQ}Q∈Q1
, {Q}Q∈Q1

) = A ({κQ}Q∈Q1
, {Q}Q∈Q1

) <∞,(3.4)

where Q1 := {Q ⊂ Ω : Q is a type (b) cube with `(Q) < 1}.
Case 2: If bj is a type (b) (p(·), q)Ω-atom as in (3.1) and is supported on a

type (b) cube Q with `(Q) ≥ 1. Now we just define

(bj)2 :=

{
bj(x), for x ∈ Q,
0, elsewhere,

which implies that (bj)2 is an acceptable type (b) local (p(·), q)-atom in Rn and

A′ ({κQ}Q∈Q2 , {Q}Q∈Q2) = A ({κQ}Q∈Q2 , {Q}Q∈Q2) <∞,(3.5)

where Q2 := {Q ⊂ Ω : Q is a type (b) cube with `(Q) ≥ 1}. Moreover, from
Definition 1.7, [17, Theorem 1.5], (3.3), (3.4), (3.5) and (3.2), we deduce that

‖f‖
h
p(·)
r (Ω)

≤ ‖F‖hp(·)(Rn) . A′
(
{λj}∞j=1, {Qj}∞j=1

)
+A′ ({κQ}Q∈Q1

, {Q}Q∈Q1
)

+A′ ({κQ}Q∈Q2 , {Q}Q∈Q2) <∞,

which implies that f ∈ hp(·)r (Ω). This finishes the proof of Theorem 1.9. �
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