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ON STABILITY OF NONLINEAR NONAUTONOMOUS
SYSTEMS BY LYAPUNOV’S DIRECT METHOD

JONG YEOUL PARK*, VU NGoc PHAT**, AND IL Hyo Jung*

ABSTRACT. The paper deals with asymptotic stability of nonlinear
nonautonomous systems by Lyapunov’s direct method. The pro-
posed Lyapunov-like function V(t,z) needs not be continuous in ¢
and Lipschitz in z in a Banach space. The class of systems consid-
ered is allowed to be nonautonomous and infinite-dimensional and
we relax the boundedness, the Lipschitz assumption on the system
and the definite decrescent condition on the Lyapunov function.

1. Introduction

Consider a nonlinear time-varying differential equation of the gen-
eral form:

(1) { #(t) = f(t,z(t), t>to€R,

:L‘(to) = T,

where the states z(t) take values in X, f(¢,z) : R x X — X is a given
nonlinear function and f(¢,0) = 0, for all ¢t € R. We shall assume that
conditions are imposed on the system (1) such that existence of its
solutions are guaranteed.

It is well-known that the Lyapunov direct or second method is one
of the most useful and fruitful techniques in stability analysis of non-
linear differential equations and has gained increasing significance in
the development of stability theory of dynamical systems [6, 9, 20,
21]. The classical direct method of stability is based essentially on
the existence of a positive definite Lyapunov function with a nega-
tive derivative. There are a number of books and papers available
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expouding the extensions and generalizations of Lyapunov functions,
see, e.g., [1, 3, 8, 11, 12, 18] and references therein. It is recognized
that the Lyapunov-like functions serve as a main tool to reduce a given
complicated system into a relatively simpler system and provide useful
applications to control systems [4, 16, 17, 19]. However, the problem of
Lyapunov-like functions and their characterization have remained un-
der active investigation and finding Lyapunov-like functions for general
nonlinear systems is usually a difficult task.

In [10], sufficient conditions for the asymptotic stability of system
(1) were given with the boundedness assumption

(2) If(t, )|l <M, V(tz)€RxR",

and the Lyapunov function V(t,z) : R x D — R, is continuous in
(t,z) € R x D and Lipschitz in z € D satisfying

DfV(t,z) < —y(lzll) <0, V(t,z)e RxD \ {0},

where D C R™ is an open neighborhood of the origin, v(.) : Rt — R~
is a given non-decreasing continuous function and

D}V (t,z) = lim inf Vit+hethf)=Vta)
h—0t h

The weaker stability conditions were proposed and presented in [8] for
system (1), where the Lyapunov function V (¢, z) satisfies the following
conditions

(3) a(llz]l) £ V£, z) < b(llzl),
D?V(t’x) < —'y(V(t,.’I:)),

where a(.),b(.),¥(.) are continuous strictly increasing functions.

Thanks to a result of [16], the assumption on Lyapunov-like func-
tions in the asymptotic stability for a class of autonomous systems has
been considerably relaxed by the existence of two continuous positive
definite functions V(z) : R* — R,v(.) : R® — R*\ {0}, where V(z) is
proper (i.e., V(z) — oo as ||z|| — oo) satisfying condition

(4) D_V(z) < —(z),
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where

D_V(z) = lim hi_?& V(z(t+ hzt) -V, x)

Paper (2] proposed a nondifferentiable stepswise decreasing Lya-
punov function V' (¢, z) for system (1), where X = R", and the function
f(t, ) is assumed to be locally Lipschitzian.

Inspired by the results of [2, 8] we consider a Lyapunov-like function
V(t,z) for time-varying system (1), which needs not be continuous in
t and Lipschitz in « in a Banach space. In this general setup, the class
of systems considered is allowed to be nonautonomous and infinite-
dimensional and we relax the boundedness, the Lipschitz assumption
on the system and the definite decrescent condition on the Lyapunov
function.

The paper is organized as follows. In Section 2, we give main no-
tations and definitions of Lyapunov-like functions needed later. Sec-
tion 3 presents main theorems on asymptotic stability with proposed
Lyapunov-like functions. The conclusion is drawn in Section 4.

2. Notations and definitions

We shall employ the following notations and definitions throughout:
X denotes an infinite-dimensional Banach space with the correspond-
ing norm ||.||,
B, denotes the open unit ball with radius ¢,
R denotes the real line; RT denotes the set of non-negative real num-
bers,
Z* denotes the set of non-negative integers,
R™ denotes the n—dimensional Euclidean space.

DEFINITION 2.1. The zero solution of (1) is said to be stable if for
every € > 0,tp € R, there exists a number § > 0 (depending upon e
and tp) such that for any solution z(t) of (1) with ||zo]| < § implies
lz(t)|| < e, for all t > tq.

DEFINITION 2.2. The zero solution of (1) is said to be asymptotically
stable if it is stable and there is a number § > 0 such that any solution
z(t) with |[zo| < ¢ satisfies lim;_, ||Jz(t)|| = O.
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In the above definitions, if the number § > 0 is independent on ¢,
then the zero solution of the system is said to be uniformly (asymptot-
ically) stable.

DEFINITION 2.3. Let H be a Hilbert space. A function f(¢,z) :
R x H — H is dissipative if there is a number L > 0 such that for all
(t,x)e Rx H:

(5) <z, f(t,z) > < L|zl?,

where < .,. > denotes the inner product in H.

Let V(t,z) : Rx X — R be some given function, 7" > 0, and D C X
be some open neighborhood of zero.

DEFINITION 2.4. A function V (¢,z) : Rx D — X is a Lyapunov-like
function for system (1) if it satisfies the following conditions:
(1) There exist a non-decreasing function a(t) : R — R™, and a non-
increasing function b(¢) : R — R*, and numbers a > 0,b > 0 such that
for all (t,z) e Rx D :

(6) a(t)|lz|* < V¢, 2) < b(t)||=|®

(ii) For every 8 > 0, there are a number T' > 0 and functions v(.) :
Rt — R* c¢(.) : R — RT, strictly increasing, passing through zero and
v(.) is integrable, such that, Y(¢,z) € R x D\ {0},

™ AV () i= V(E+T,a(t +T)) - V(t,2)

t+3
< —e(t) / y(llz(s)l)ds < 0,

where z(t) is a solution of (1) with z(¢) = z. If the number T depending
on 3 satisfies the condition 0 < T < (3, then we say that V(¢,z) is a
strict Lyapunov-like function for system (1).

3. Stability results

In the following theorem, we relax the boundedness condition (2) on
the system and the conditions (3), (4) on V(¢,z). We then provide a
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sufficient condition for asymptotic stability of system (1) with the pro-
posed Lyapunov-like functions, where V (¢, z) needs not be continuous
in t and Lipschitz in z.

THEOREM 3.1. Assume that
(8) I f(t,z)|| < M(t), V(t,z) € Rx X,

where M (t) : R — R™ is an integrable function satisfying the condition

t+h

9) lim M(s)ds=0, VteR.
h—0 J,

If the system (1) admits a strick Lyapunov-like function, then it is
asymptotically stable.

Proof. a) The system is stable: We assume to the contrary that
there are a number ¢ > 0 and {; € R, such that for every § > 0 and
for some solution z(t) of system (1) with ||zo|| < 6, there is a number
S > to such that ||z(S)|| > €. Let §; > 0 be chosen such that Bs, C D.
Let us take any o € (0,d1).

In view of condition (9), we can find a number 3 > 0 such that

t+p8 B ' a(to)e“
(10) t M(s)ds := h < min{é; — &2, [W

For this 8, from the condition (7) it follows that there is a number
T € (0, h) such that for all (¢,z) € R x By, :

1%}, Vt € R.

(11) V({i+T,zt+T)) - V(tz) <0

We now take a number ¢ > 0 such that

. a(to)d11/6 rafto)e® 176
6 < min {8 —h,[ ) b(go) ] - n}.

For this ¢ there is, by the contrary assumption, a number S > tg
such that ||z(S)|| > e. Consider the solution z(t) with ||zo|| < 4. Since
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S > tg, there are an integer k > 0 and number 7 € [0,T') such that
S =tg + kT + 7. Since

to+T
(o + T)|| < llzoll + / M(s)ds
to+g
< §+ M(s)ds

to

=0+ h <éy,
which gives z(to +T') € Bs,. Applying (6) and (11), we have

a(to)l|lz(to + T)||® < V(to + T, z(to +T))
S V(to,xo) _<_ b(to)”d)o“b < b(to)(sb < a(to)ég
and hence ||z(tp + T')|| < d2. On the other hand,
to+2T
lz(to + 2T)|| < l|z(to + T)|| + / M(s) ds

to+T

to+T+48
552—1—/ M(S)d8<52+h<51,
to+T

which implies z(to + 2T) € Bs,. Thus, applying (6) and (11) again the
following estimate holds

a(to)||lz(to + 2T)||* < V(to + 2T, z(to + 2T))
<V(to+T,z(to +T)) < V(to, o) < a(to)ds,

and hence ||z(to+2T)|| < 2. Repeating the same arguments, we obtain
lz(t+ kT)|| < 82, Vke Z*.

Therefore, for every k € Z*, we have

t0+kT+T
12(S)]| = [e(to + kT + 7| < llz(to + KT)| + / M(s)ds
to+kT
<dr+h<é
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which gives z(S) € Bs,. Applying (6) and (11), we have

< V(to + 7 a(to + 7)) < blto) ||z (to +7)|"-

Since

t0+7‘
[z(to + 7 < [loll + M(s)ds
to
to+B
<+ M(s)ds
to

<d+h

<[]

)

we obtain a(tg)e® < a(tp)e®, which is a contradiction.

b) The sytem (1) is asymptotically stable: We remain to show that
there is a number § > 0, for every solution z(t) of (1) with ||z (¢o)|| < 4,
for every € > 0, there exists a number N > 0 such that ||z(t)|| < € for
all t > tg + N. For this, from the stability of the system it follows that
for §; > 0, where 01 is chosen so that Bs, C D, we can find a number
d2 > 0 such that any solution z(t) of the system with ||z(to)| < &2
implies

(12) le(®)l <61, > o
Consider any solution z(t) of (1) with ||zo|| < § = min{d1,d2}. We

then have z(t) € D, for all ¢ > ty. Let ¢ > 0 be an arbitrary given
number, we define

a(to) a] l/b.

% = 5
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Let us take any 04 € (0,83). Due to the condition (9), there is a
number 3 > 0 such that

t+8
(13) / M(s)ds < min{ds,03 — 8}, Vt€R.
t

For this 3 > 0 there is, by condition (7), a number T € (0, 3), and
functions ¢(.),y(.) such that for all (t,z) € R x D\ {0} :

t+8
(19 V(E+Tee+D) -V <o) [ lleEis

We shall show that there is an integer K > 0 such that
(15) lz(to + KT)|| < d4.

Indeed, if (15) is not satisfied, then ||z(to + kT)|| > 4 for all k € Z™.
Taking (12) into account and applying (14), we have

(16)
V(to + (k+ 1T, z(to + (k+ 1)T))

to+kT+0
<V (to + KT, 2(io + kD) — clta + A7) [ L s
to+0 ’
< V(to + KT, z(to + kT)) — c(to) / Y(lz(s)]) ds,

where g := to + kT. On the other hand, for every t € [to, %o + ], we
have

le®l > lz(o)ll - / £ (s, 2(s))ds

to+3
>04— [ M(s)ds.

to
Taking (13) into account, we have
to+8
le@®)ll 2 6s— | M(s)ds =n>0,

to
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and hence

to+8
L 2ti@as 2 gy > 0
Therefore, from (16), it follows that
Vito+ (k+1)T, z(to + (k+1)T)) < V(to+kT, 2(to+kT)) — c(to)y(n)B-
Repeating the same arguments we obtain
Vto + (k+ V)T, z(to + (k + 1)T)) < V(to, o) — (k + 1)c(to)v(n)B.
Since the Lyapunov-like function V (¢, z) is non-negative, we have
0 < V(to, zo) — (k + L)c(to)y(n)B, Vk € Z7,
or equivalently
(k + 1)e(to)y(n)B < V(to, 7o) < b(to)||zol|® < b(t0)d” < +o0
which is a contradiction when letting ¥ — oo. Thus, the condition (15)

is proved. The proof is completed as follows. For every ¢t > to + KT
there are numbers kg > K,7 € [0,T) such that t — ¢ty = koT + 19- We

have
to+KT+r
lz(to + KT +10)]| < (to + KT)|| +/ M(s) ds

t+KT

to+ KT+

554+/ M(s)ds < &s.
to+ KT
Therefore

a(to)lz@)|* < a(®)e®)* < V(t,2(2))
< V(to —I—KT-I—T,x(to +KT+T0))
< b(to)||z(to + KT +7)||° < b(to)d5 = alto)e?,

which gives ||z(t)|| < e. The theorem is proved. O
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REMARK 3.1. Note that since the functions a(t),b(t) need not be
continuous, the Lyapunov function V (¢, ) is not continuous in ¢ and
it is, in general, not decreasing in t, we can not apply the techniques
used in [8]. Furthermore, if the functions a(t), b(t) are independent on
t, i.e., are constant, then Theorem 3.1 holds for uniform asymptotic
stability.

Theorem below asserts that if the boundedness of f(¢, z) is replaced
by the dissipativity assumption (5) in Hilbert space, then we can derive
asymptotic stability conditions for system (1) with a weaker Lyapunov-
like function than the strict Lyapunov-like function.

THEOREM 3.2. Assume that X = H is a Hilbert space and the func-
tion f(t,x) is dissipative in H. If the system (1) admits a Lyapunov-like
function then it is asymptotically stable.

Proof. Let f(t,z) be a dissipative function satisfying condition (5)
with the constant L > 0. We first note that for every solution z(t) of
(1) with z(to) = zo the following property holds:

(17) lz@) < llzolle“¥="), Vi > to.

Indeed, since

2 <at)a(t) > = LI =2 < 2(0), £(1,7(2)) >,

and by integrating both sides of the above relation, we have

t
()12 = l|lzoll® + Z/t < z(s), f(s,z(s)) > ds.

Then .
Ie(e)I" < ol + 2L | fa(e)|Pds.
Applying the Gronwall’s inequality, we obtain
lz(@)]? < flao||2eH 0,

which gives (17).
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a) The system is stable. The proof is similar to that of Theorem
3.1, part a), where the positive numbers d3, ¢ are defined by

-LT : _kr [2(t0)d511/b ra(to)eg 1}/ _ki

0g < b1€ , 0 < mm{&le , [ b(to) ] ,[ blto ] e }

b) The system is asymptotically stable. From the stability of the
system it follows that there is a number 6, > 0 such that for every
solution z(t) of (1) with ||zo|| < d2 implies |z(¢)]| < 81, where §; > 0
is a number chosen so that Bs, C D. Consider any solution z(t) of (1)
with ||zo|| < § = min{dq,d2}. We then have z(t) € Bs,, for all t > to.
Let € > 0 be a given number. We take

_ [af(to) 1/t —LT
83 = {b(to)e ] | 64 < 8ge~ T

Since V (¢, z) is a Lyapunov-like function, take any number § > 0 such
that

6 < %
2L6%°
We first prove that there is an integer K > 0 such that
(18) H.’I)(to + KT)“ < d4.

Indeed, if (18) is not satisfied, we have ||z(to + kT)|| > &4, for all
k € Z*. In view of (14) we have for all k € Z :

(19)
V(to 4 (k+ )T, z(to + (k + 1)T))

‘ to+kT+3
<V (t+ kDol +KD)) —clto +57) [ (le(o)l)ds
to+kT

to+kT+3
<V (to +KT,2(to +KT)) — clto) / Y(lz(s)])) ds.
to+kT

We estimate the value ||z(t)| on the interval Iz := [tg + kT, tp +
kT + f3]. On the other hand, since for all t € I :

to+kT+3
lz()]® > ||z(to + kT)||? - ;2 /

< z(s), f(s,z(s)) > ds‘
to+kT

to'f'kT'f'ﬁ
> le(to + KT)|2 - 2L / lo(s)|1? ds,
to+kT
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and since ||z(t)|| < é; for all t > to, we have
lz(@)||? > 62 — 2LAd} :=n* > 0,

which gives

to+kT+p3
(20) / A(llz(s))ds > By(n).

o+kT

Therefore, combining (19) and (20), we obtain

V(to + (k+ DT, z(to + (k + 1)T))
(to + kT, z(to + kT)) — c(to)By(n)
(to + kT, z(to + kT)) — M,

<

V(to,zo) — (K + 1)M,

<V
<V
<.

<
where M := ¢(to)F7v(n) which gives

(k4 1)M < V(to, zo) < b(tp)° < +o0.
The last inequality leads to a contradiction when letting & — oo. Thus,
(18) is proved.

For every t > to + KT, there are numbers kg > K, € [0,T), such
that t — tg = koI + 7. We have

a(to)llz(®)I|* < V (to + koT + 7, z(to + koT + 7))
<V(to+ KT+ 1,z(to + KT + 7))
< b(to) lz(to + KT +7)|°.

On the other hand, in view of (17) we have
lz(to + KT + 70)|| < |lz(to + KT)||eK™ < 64e"T < 63,

and hence
alto)|z(t)|* < bto)d5 = a(to)e®,
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which gives ||z(t)|| < e. The proof is complete. a

REMARK 3.2. The dissipative condition (2) can be replaced by the
Holder-type condition

3L >0, Ja € (0,1): | f(t,2)| < L|z|®, Y(t,z) € R x H.

In this case, the generalized Gronwall inequality [8; 22] is applied to
obtain the estimate (17) of the form

ay) < | Ioolle” T ifa=1,
z —_ 1
||w0||[1 + (1 - a)L(t - tO)]E:;7 ifae (O’ l)a

and the positive numbers €3, 44, and A in the proof of Theorem 3.2 are
defined respectively by

d4

61 <min{en™, 867}, i< by, h< Tso’
1

elT  ifa=1,
= [1+(1-a)LT]™=, ifac(0,1).

where

REMARK 3.3. Theorem 3.2 remains true even if we replace the con-
ditions (6), (7) by the following conditions:

a(t,7) < V(t,z) <b(t,T)

t+0
(21) Mvmws—[ (s, llz(s))ds < O,

where a(t, 7),b(t,7) : RxRT — R*\{0} are continuous strictly increas-
ing function in 7, a(t, 7) is non-decreasing in t, b(t, 7) is non-increasing
in t, and v(¢,h) : R x Rt — RT is a strictly increasing in h € RY
function satisfying

t+h
lim inf / v(s,h)ds >0, Vte R, h>0.
h—07 t
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ExXAMPLE 3.1. To illustrate the stability result, we consider the
asymptotic stability of a semilinear system in Hilbert space of the form

&(t) = { Az(t) +g(t,z(t)), t>0,

(22) z(to) = zo,z(t) € H.

Let us assume that the linear operator A : H — H is stable. Then,
by a result of [5], there is a positive definite symmetric linear operator
Q : H — H such that

2 < QAz,z > < —|z||*, VzeH.

Assume that the nonlinear function g(¢, z) satisfies the following growth
condition

(23) g, 2)lIl < K@)lll,. V(t,z) € BT x H,

where K (t) : R* — R is a bounded and integable function. Consider
the Lyapunov function V(t,z) =< Qz,z > . The derivative along the
trajectories z(t) of system (22) is given by

LV(,2) = ~lla@)IP+ < Qa(t) ot (1) >

Thus, we can not apply the classical stability Lyapunov theorem
since the derivative of V(t,z) may take positive and negative values.
We will show that if

t+h

(24) lim inf / [1—|QIK(s)ds >0, VteR,

h—0t t
then the system is asymptotically stable. Indeed, let us consider any
solution z(t) of (22) with z(tp) = zo. By the assumption (24), there
exist a sequence of positives numbers {¢,} going to zero and a number
N > 0 such that

t+tn

(25) / L IQIK(s)lds > a >0, ¥n> N.

t

Let 8 € (0,t,),n > N be an arbitrary number. We will show that
there are a positive number T > 0, and a function (¢, h) satisfying the
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condition (21) and hence, by Theorem 3.2 and Remark 3.3, the system
is asymptotically stable. For this, let ¢ be an arbitrary initial state
such that ||zg]| = 7 > 0. Since the solution z(t) is continuous, we can
find a number ¢ > 0 such that ||z(to+t)|| > 7 > 0 for all ¢ € [to, o+ 9]
Let us take a number n > N such that ¢, < § satisfying (25) and let
T > t, > (3. From (23) it follows that for every to > 0, the following
relation holds:

ATV(to, z)= V(to + T, x(to + T)) — V(to,l‘o)
to+T d

= /t aV(s,x(s)) ds

0

to+T
(26) - / [= ll2(8)]2+ < Qa(s), a(s, 2(s)) > ] ds

to+5
<- / [1 = QUK (s)]l2(s)| ds.

to

On the other hand, setting v(¢, h) = [1 - ||Q| K (t)]h? and using (25)
we have

to+in
/ ~v(s,h)ds
to

to+in
- [ - 1QIK @R ds

to

to+in
> b2 / [1 - QUK (s) ds

to
= h%a > 0.

Therefore

t+h
lim inf / v(s,h)ds >0, te€ R,h>0,
t

h—0t

which together with (26) proves the assertion.
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4. Conclusions

In this paper, asymptotic stability of nonlinear time-varying dif-
ferential equations by Lyapunov direct method have been investigated.
Discontinuous Lyapunov-like function are proposed for sufficient stabil-
ity conditions. Several stability results obtained earlier can be derived.
The stability results obtained in the paper can be considered as a fur-
ther development of Lyapunov function characterization in stability
analysis of nonlinear dynamical systems.
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