• 제목/요약/키워드: Liouville theorem

검색결과 30건 처리시간 0.024초

RIEMANN-LIOUVILLE FRACTIONAL FUNDAMENTAL THEOREM OF CALCULUS AND RIEMANN-LIOUVILLE FRACTIONAL POLYA TYPE INTEGRAL INEQUALITY AND ITS EXTENSION TO CHOQUET INTEGRAL SETTING

  • Anastassiou, George A.
    • 대한수학회보
    • /
    • 제56권6호
    • /
    • pp.1423-1433
    • /
    • 2019
  • Here we present the right and left Riemann-Liouville fractional fundamental theorems of fractional calculus without any initial conditions for the first time. Then we establish a Riemann-Liouville fractional Polya type integral inequality with the help of generalised right and left Riemann-Liouville fractional derivatives. The amazing fact here is that we do not need any boundary conditions as the classical Polya integral inequality requires. We extend our Polya inequality to Choquet integral setting.

A GENERALIZATION OF LIOUVILLE′S THEOREM ON INTEGRATION IN FINITE TERMS

  • Utsanee, Leerawat;Vichian, Laohakosol
    • 대한수학회지
    • /
    • 제39권1호
    • /
    • pp.13-30
    • /
    • 2002
  • A generalization of Liouville's theorem on integration in finite terms, by enlarging the class of fields to an extension called Ei-Gamma extension is established. This extension includes the $\varepsilon$L-elementary extension of Singer, Saunders and Caviness and contains the Gamma function.

LIOUVILLE TYPE THEOREM FOR p-HARMONIC MAPS II

  • Jung, Seoung Dal
    • 대한수학회논문집
    • /
    • 제29권1호
    • /
    • pp.155-161
    • /
    • 2014
  • Let M be a complete Riemannian manifold and let N be a Riemannian manifold of non-positive sectional curvature. Assume that $Ric^M{\geq}-\frac{4(p-1)}{p^2}{\mu}_0$ at all $x{\in}M$ and Vol(M) is infinite, where ${\mu}_0$ > 0 is the infimum of the spectrum of the Laplacian acting on $L^2$-functions on M. Then any p-harmonic map ${\phi}:M{\rightarrow}N$ of finite p-energy is constant Also, we study Liouville type theorem for p-harmonic morphism.

A MONOTONICITY FORMULA AND A LIOUVILLE TYPE THEOREM OF V-HARMONIC MAPS

  • Zhao, Guangwen
    • 대한수학회보
    • /
    • 제56권5호
    • /
    • pp.1327-1340
    • /
    • 2019
  • We establish a monotonicity formula of V-harmonic maps by using the stress-energy tensor. Use the monotonicity formula, we can derive a Liouville type theorem for V-harmonic maps. As applications, we also obtain monotonicity and constancy of Weyl harmonic maps from conformal manifolds to Riemannian manifolds and ${\pm}holomorphic$ maps between almost Hermitian manifolds. Finally, a constant boundary-value problem of V-harmonic maps is considered.

REMARKS ON LIOUVILLE TYPE THEOREMS FOR THE 3D STATIONARY MHD EQUATIONS

  • Li, Zhouyu;Liu, Pan;Niu, Pengcheng
    • 대한수학회보
    • /
    • 제57권5호
    • /
    • pp.1151-1164
    • /
    • 2020
  • The aim of this paper is to establish Liouville type results for the stationary MHD equations. In particular, we show that the velocity and magnetic field, belonging to some Lorentz spaces, must be zero. Moreover, we also obtain Liouville type theorem for the case of axially symmetric MHD equations. Our results generalize previous works by Schulz [14] and Seregin-Wang [18].

PLANCHEREL AND PALEY-WIENER THEOREMS FOR AN INDEX INTEGRAL TRANSFORM

  • Kim, Vu--Tuan;Ali Ismail;Megumi Saigo
    • 대한수학회지
    • /
    • 제37권4호
    • /
    • pp.545-563
    • /
    • 2000
  • An integral transform with the Bessel function Jv(z) in the kernel is considered. The transform is relatd to a singular Sturm-Liouville problem on a half line. This relation yields a Plancherel's theorem for the transform. A Paley-Wiener-type theorem for the transform is also derived.

  • PDF

A LIOUVILLE THEOREM OF AN INTEGRAL EQUATION OF THE CHERN-SIMONS-HIGGS TYPE

  • Chen, Qinghua;Li, Yayun;Ma, Mengfan
    • 대한수학회지
    • /
    • 제58권6호
    • /
    • pp.1327-1345
    • /
    • 2021
  • In this paper, we are concerned with a Liouville-type result of the nonlinear integral equation of Chern-Simons-Higgs type $$u(x)=\vec{\;l\;}+C_{\ast}{{\displaystyle\smashmargin{2}{\int\nolimits_{\mathbb{R}^n}}}\;{\frac{(1-{\mid}u(y){\mid}^2){\mid}u(y){\mid}^2u(y)-\frac{1}{2}(1-{\mid}u(y){\mid}^2)^2u(y)}{{\mid}x-y{\mid}^{n-{\alpha}}}}dy.$$ Here u : ℝn → ℝk is a bounded, uniformly continuous function with k ⩾ 1 and 0 < α < n, $\vec{\;l\;}{\in}\mathbb{R}^k$ is a constant vector, and C* is a real constant. We prove that ${\mid}\vec{\;l\;}{\mid}{\in}\{0,\frac{\sqrt{3}}{3},1\}$ if u is the finite energy solution. Further, if u is also a differentiable solution, then we give a Liouville type theorem, that is either $u{\rightarrow}\vec{\;l\;}$ with ${\mid}\vec{\;l\;}{\mid}=\frac{\sqrt{3}}{3}$, when |x| → ∞, or $u{\equiv}\vec{\;l\;}$, where ${\mid}\vec{\;l\;}{\mid}{\in}\{0,1\}$.