Browse > Article
http://dx.doi.org/10.4134/JKMS.j160208

LIOUVILLE TYPE THEOREMS FOR TRANSVERSALLY HARMONIC AND BIHARMONIC MAPS  

Jung, Min Joo (Department of Mathematics and Research Institute for Basic Sciences Jeju National University)
Jung, Seoung Dal (Department of Mathematics and Research Institute for Basic Sciences Jeju National University)
Publication Information
Journal of the Korean Mathematical Society / v.54, no.3, 2017 , pp. 763-772 More about this Journal
Abstract
In this paper, we study the Liouville type theorems for transversally harmonic and biharmonic maps on foliated Riemannian manifolds.
Keywords
generalized maximum principle; transversally harmonic and biharmonic map; Liouville type theorem;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. D. Jung, Harmonic maps of complete Riemannian manifolds, Nihonkai Math. J. 8 (1997), no. 2, 147-154.
2 S. D. Jung, The first eigenvalue of the transversal Dirac operator, J. Geom. Phys. 39 (2001), no. 3, 253-264.   DOI
3 S. D. Jung, Variation formulas for transversally harmonic and biharmonic maps, J. Geom. Phys. 70 (2013), 9-20.   DOI
4 S. D. Jung, K. R. Lee, and K. Richardson, Generalized Obata theorem and its applications on foliations, J. Math. Anal. Appl. 376 (2011), no. 1, 129-135.   DOI
5 R. Schoen and S. T. Yau, Harmonic maps and the topology of stable hypersurfaces and manifolds of nonnegative Ricci curvature, Comm. Math. Helv. 51 (1976), no. 3, 333-341.   DOI
6 P. Tondeur, Geometry of foliations, Basel: Birkhauser Verlag, 1997.
7 S. T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201-228.   DOI
8 S. T. Yau, Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J. 25 (1976), no. 7, 659-670.   DOI
9 S. Yorozu, Notes on suqare-integrable cohomology spaces on certain foliated manifolds, Trans. Amer. Math. Soc. 255 (1979), 329-341.   DOI
10 J. A. Alvarez Lopez, The basic component of the mean curvature of Riemannian foliations, Ann. Global Anal. Geom. 10 (1992), no. 2, 179-194.   DOI
11 P. Baird, A. Fardoun, and S. Ouakkas, Liouville-type theorems for biharmonic maps between Riemannian manifolds, Adv. Calc. Var. 3 (2010), no. 1, 49-68.   DOI
12 P. Berard, A note on Bochner type theorems for complete manifolds, Manuscripta Math. 69 (1990), no. 3, 261-266.   DOI
13 Y.-J. Chiang and R. A. Wolak, Transversally biharmonic maps between foliated Riemannian manifolds, Internat. J. Math. 19 (2008), no. 8, 981-996.   DOI
14 S. Dragomir and A. Tommasoli, Harmonic maps of foliated Riemannian manifolds, Geom. Dedicata 162 (2013), 191-229.   DOI
15 A. El Kacimi Alaoui and E. Gallego Gomez, Applications harmoniques feuilletees, Illinois J. Math. 40 (1996), no. 1, 115-122.
16 M. J. Jung and S. D. Jung, On transversally harmonic maps of foliated Riemannian manifolds, J. Korean Math. Soc. 49 (2012), no. 5, 977-991.   DOI
17 J. Konderak and R. A. Wolak, Some remarks on transversally harmonic maps, Glasg. Math. J. 50 (2008), no. 1, 1-16.   DOI
18 F. W. Kamber and P. Tondeur, Infinitesimal automorphisms and second variation of the energy for harmonic foliations, Tohoku Math. J. 34 (1982), no. 4, 525-538.   DOI
19 F. W. Kamber and P. Tondeur, De Rham-Hodge theory for Riemannian foliations, Math. Ann. 277 (1987), no. 3, 415-431.   DOI
20 J. Konderak and R. A. Wolak, Transversally harmonic maps between manifolds with Riemannian foliations, Q. J. Math. 54 (2003), no. 3, 335-354.   DOI
21 J. S. Pak and S. D. Jung, A transversal Dirac operator and some vanishing theorems on a complete foliated Riemannian manifold, Math. J. Toyama Univ. 16 (1993), 97-108.
22 E. Park and K. Richardson, The basic Laplacian of a Riemannian foliation, Amer. J. Math. 118 (1996), no. 6, 1249-1275.   DOI