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RIEMANN-LIOUVILLE FRACTIONAL FUNDAMENTAL

THEOREM OF CALCULUS AND RIEMANN-LIOUVILLE

FRACTIONAL POLYA TYPE INTEGRAL INEQUALITY AND

ITS EXTENSION TO CHOQUET INTEGRAL SETTING

George A. Anastassiou

Abstract. Here we present the right and left Riemann-Liouville frac-

tional fundamental theorems of fractional calculus without any initial

conditions for the first time. Then we establish a Riemann-Liouville frac-
tional Polya type integral inequality with the help of generalised right

and left Riemann-Liouville fractional derivatives. The amazing fact here

is that we do not need any boundary conditions as the classical Polya
integral inequality requires. We extend our Polya inequality to Choquet

integral setting.

1. Introduction

We mention the following famous Polya’s integral inequality, see [5], [6, p.
62], [7] and [8, p. 83].

Let f (x) be differentiable and not identically a constant on [a, b] with f (a) =
f (b) = 0. Then there exists at least one point ξ ∈ [a, b] such that

|f ′ (ξ)| > 4

(b− a)
2

∫ b

a

f (x) dx.

In [9] Feng Qi presents the following very interesting Polya type integral
inequality which generalizes the last inequality:

Let f (x) be differentiable and not identically a constant on [a, b] with f (a) =
f (b) = 0 and M = sup

x∈[a,b]
|f ′ (x)|. Then∣∣∣∣∣
∫ b

a

f (x) dx

∣∣∣∣∣ ≤ (b− a)
2

4
M,

where (b−a)2
4 is the best constant in the above inequality.
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We are greatly motivated by the above classical Polya inequalities.

2. Background

Here the background contains only original results.
We need:

Definition. Let 0 < q < 1, f ∈ C ([a, b]). The right Riemann-Liouville frac-
tional integral is given by (see [1, p. 333])

(1) tD
−q
b f (t) :=

1

Γ (q)

∫ b

t

(τ − t)q−1 f (τ) dτ, ∀t ∈ [a, b] ,

where Γ is the gamma function.
The right Riemann-Liouville fractional derivative of order q is given by (see

[4, p. 89])

(2) tD
q
bf (t) := − 1

Γ (1− q)
d

dt

∫ b

t

(τ − t)−q f (τ) dτ, ∀t ∈ [a, b] .

We give:

Theorem 2.1. Let 0 < q < 1 and f ∈ C ([a, b]). Assume that tD
q
bf ∈

L∞ ([a, b]). Then

(3) tD
−q
b (tD

q
bf (t)) = f (t) , ∀ t ∈ [a, b] ,

which means

(4) f (t) =
1

Γ (q)

∫ b

t

(τ − t)q−1 (τD
q
bf (τ)) dτ, ∀ t ∈ [a, b] .

This is a kind of fundamental theorem for right Riemann-Liouville fractional
calculus without any initial condition.

Proof. Since 0 < q < 1, then 1− q > 0 and q − 1 < 0. We have that

(5) tD
q
bf (t)=− d

dt
tD

q−1
b f (t)=− 1

Γ (1−q)
d

dt

∫ b

t

(τ−t)−q f (τ) dτ, ∀t∈ [a, b] .

Furthermore it holds

tD
−q
b (tD

q
bf (t)) =

1

Γ (q)

∫ b

t

(τ − t)q−1 τD
q
bf (τ) dτ(6)

= − d

dt

{
1

Γ (q + 1)

∫ b

t

(τ − t)q τD
q
bf (τ) dτ

}
.

Next we apply integration by parts to

− 1

Γ (q + 1)

∫ b

t

(τ − t)q τD
q
bf (τ) dτ

=
1

Γ (q + 1)

∫ b

t

(τ − t)q d

dτ
τD

q−1
b f (τ) dτ
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=
1

Γ (q + 1)

[
(τ − t)q τD

q−1
b f (τ)

]b
t
− 1

Γ (q)

∫ b

t

(τ − t)q−1 τD
q−1
b f (τ) dτ(7)

=
(b− t)q

Γ (q + 1)

[
tD

q−1
b f (t)

]
t=b
−t D−1b f (t) .

Therefore we have

− d

dt

{
1

Γ (q + 1)

∫ b

t

(τ − t)q τD
q
bf (τ) dτ

}
(8)

= f (t)− (b− t)q−1

Γ (q)

[
tD

q−1
b f (t)

]
t=b

.

Consequently we find

(9) tD
−q
b (tD

q
bf (t)) = f (t)−

[
tD

q−1
b f (t)

]
t=b

(b− t)q−1

Γ (q)
, 0 < q < 1.

Here by assumption f ∈C ([a, b]) and tD
q
bf (t)∈L∞ ([a, b]), therefore tD

q−1
b f (t)

is bounded at t = b.
We notice the following: we have

(10) tD
q−1
b f (t) =

1

Γ (1− q)

∫ b

t

(τ − t)−q f (τ) dτ,

and ∣∣∣tDq−1
b f (t)

∣∣∣ ≤ 1

Γ (1− q)

∫ b

t

(τ − t)−q |f (τ)| dτ

≤
‖f‖∞,[a,b]
Γ (1− q)

∫ b

t

(τ − t)−q dτ

=
‖f‖∞,[a,b]
Γ (1− q)

(b− t)1−q

(1− q)
(11)

=
‖f‖∞,[a,b] (b− t)1−q

Γ (2− q)
.

That is

(12)
∣∣∣tDq−1

b f (t)
∣∣∣ ≤ ‖f‖∞,[a,b]

Γ (2− q)
(b− t)1−q , ∀t ∈ [a, b] .

Hence

(13) lim
t→b−

∣∣∣tDq−1
b f (t)

∣∣∣ = 0.

Therefore [
tD

q−1
b f (t)

]
t=b

= 0.

We have proved that

(14) tD
−q
b (tD

q
bf (t)) = f (t) , ∀t ∈ [a, b] . �
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We need:

Definition. Let 0 < q < 1, f ∈ C ([a, b]). The left Riemann-Liouville frac-
tional integral is given by (see [4, p. 65])

(15) aD
q
t f (t) :=

1

Γ (q)

∫ t

a

(t− τ)
q−1

f (τ) dτ, ∀t ∈ [a, b] .

The left Riemann-Liouville fractional derivative of order q is given by (see
[4, p. 68])

(16) aD
q
t f (t) :=

1

Γ (1− q)
d

dt

∫ t

a

(t− τ)
−q
f (τ) dτ, ∀t ∈ [a, b] .

We give:

Theorem 2.2. Let 0 < q < 1 and f ∈ C ([a, b]). Assume that aD
q
t f ∈

L∞ ([a, b]). Then

(17) aD
−q
t (aD

q
t f (t)) = f (t) , ∀ t ∈ [a, b] ,

which means

(18) f (t) =
1

Γ (q)

∫ t

a

(t− τ)
q−1

(aD
q
τf (τ)) dτ, ∀ t ∈ [a, b] .

This is a kind of fundamental theorem of left Riemann-Liouville fractional cal-
culus without any initial condition.

Proof. From [4, p. 71, (2.113)], there, when 0 < q < 1, we get

(19) aD
−q
t (aD

q
t f (t)) = f (t)−

[
aD

q−1
t f (t)

]
t=a

(t− a)
q−1

Γ (q)
.

We notice that (q − 1 < 0)

(20) aD
q−1
t f (t) =

1

Γ (1− q)

∫ t

a

(t− τ)
−q
f (τ) dτ, ∀t ∈ [a, b] .

Hence it holds∣∣∣aDq−1
t f (t)

∣∣∣ ≤ 1

Γ (1− q)

∫ t

a

(t− τ)
−q |f (τ)| dτ

≤
‖f‖∞,[a,b]
Γ (1− q)

(∫ t

a

(t− τ)
−q
dτ

)
=
‖f‖∞,[a,b]
Γ (1− q)

(t− a)
1−q

(1− q)
(21)

=
‖f‖∞,[a,b] (t− a)

1−q

Γ (2− q)
.

That is

(22)
∣∣∣aDq−1

t f (t)
∣∣∣ ≤ ‖f‖∞,[a,b]

Γ (2− q)
(t− a)

1−q
, ∀t ∈ [a, b] .
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Hence

lim
t→a+

∣∣∣aDq−1
t f (t)

∣∣∣ = 0.

Therefore

(23)
[
aD

q−1
t f (t)

]
t=a

= 0.

The theorem is proved. �

3. Main results

Next we present the Riemann-Liouville fractional Polya type inequality with-
out any boundary conditions.

Theorem 3.1. Let 0 < q < 1, f ∈C ([a, b]). Assume that aD
q
t f ∈L∞

([
a, a+b2

])
and tD

q
bf (t) ∈ L∞

([
a+b
2 , b

])
. Set

(24) N (f) := max
{
‖aDq

t f (t)‖∞,[a, a+b
2 ] , ‖tD

q
bf (t)‖∞,[ a+b

2 ,b]

}
.

Then

(25)

∫ b

a

|f (t)| dt ≤ N (f)
(b− a)

q+1

Γ (q + 2) 2q
.

Inequality (25) is sharp, namely it is attained by

(26) f (t) :=

{
(t− a)

q
, t ∈

[
a, a+b2

]
,

(b− t)q , t ∈
[
a+b
2 , b

]
,

0 < q < 1.

Clearly here non-zero constant functions f are not possible.

Proof. By (18) we get that

(27)

|f (t)| ≤ 1

Γ (q)

∫ t

a

(t− τ)
q−1 |aDq

τf (τ)| dτ

≤ ‖aDq
t f (t)‖∞,[a, a+b

2 ]
(t− a)

q

Γ (q + 1)

for any t ∈
[
a, a+b2

]
.

By (4) we get that

(28)

|f (t)| ≤ 1

Γ (q)

∫ b

t

(τ − t)q−1 |τDq
bf (τ)| dτ

≤ ‖tDq
bf (t)‖∞,[ a+b

2 ,b]
(b− t)q

Γ (q + 1)

for any t ∈
[
a+b
2 , b

]
.

Hence we get that (by (27), (28))∫ b

a

|f (t)| dt =

∫ a+b
2

a

|f (t)| dt+

∫ b

a+b
2

|f (t)| dt
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≤ 1

Γ (q + 1)

[
‖aDq

t f (t)‖∞,[a, a+b
2 ]

∫ a+b
2

a

(t− a)
q
dt

+ ‖tDq
bf (t)‖∞,[ a+b

2 ,b]

∫ b

a+b
2

(b− t)q dt

]
(29)

=
1

Γ (q + 1) (q + 1)

[
‖aDq

t f (t)‖∞,[a, a+b
2 ]

(
b− a

2

)q+1

+ ‖tDq
bf (t)‖∞,[ a+b

2 ,b]

(
b− a

2

)q+1
]

=
1

Γ (q + 2)

(
b− a

2

)q+1 [
‖aDq

t f (t)‖∞,[a, a+b
2 ]

+ ‖tDq
bf (t)‖∞,[ a+b

2 ,b]

]
≤ max

{
‖aDq

t f (t)‖∞,[a, a+b
2 ] , ‖tD

q
bf (t)‖∞,[ a+b

2 ,b]

} (b− a)
q+1

Γ (q + 2) 2q
.(30)

So we have proved

∫ b

a

|f (t)| dt ≤ max
{
‖aDq

t f (t)‖∞,[a, a+b
2 ] , ‖tD

q
bf (t)‖∞,[ a+b

2 ,b]

} (b− a)
q+1

Γ (q + 2) 2q
.

(31)

Inequality (31) is sharp, it is attained by

(32) f (t) :=

{
(t− a)

q
, t ∈

[
a, a+b2

]
,

(b− t)q , t ∈
[
a+b
2 , b

]
,

0 < q < 1.

Notice that

(33) f

((
a+ b

2

)
−

)
= f

((
a+ b

2

)
+

)
=

(
b− a

2

)q
,

so that f ∈ C ([a, b]) .
We see that (by (16))

aD
q
t f (t) =

1

Γ (1− q)
d

dt

∫ t

a

(t− τ)
−q

(τ − a)
q
dτ

=
1

Γ (1− q)
d

dt

∫ t

a

(t− τ)
(1−q)−1

(τ − a)
(q+1)−1

dτ (by [11, p. 256])

=
1

Γ (1− q)
d

dt

Γ (1− q) Γ (q + 1)

Γ (2)
(t− a)(34)

= Γ (q + 1)
d

dt
(t− a) = Γ (q + 1) , ∀t ∈

[
a,
a+ b

2

]
.
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That is

(35)
∥∥
aD

q
t f (t)

∥∥
∞,[a, a+b

2 ] = Γ (q + 1) .

Similarly acting (by (2))

tD
q
bf (t) = − 1

Γ (1− q)
d

dt

∫ b

t

(τ − t)−q (b− τ)
q
dτ

= − 1

Γ (1− q)
d

dt

∫ b

t

(τ − t)(1−q)−1 (b− τ)
(q+1)−1

dτ (by [11, p. 256])

= − 1

Γ (1− q)
d

dt

Γ (q + 1) Γ (1− q)
Γ (2)

(b− t)(36)

= − d

dt
Γ (q + 1) (b− t)

= −Γ (q + 1)
d

dt
(b− t) = Γ (q + 1) , ∀t ∈

[
a+ b

2
, b

]
.

That is

(37)
∥∥
tD

q
bf (t)

∥∥
∞,[ a+b

2 ,b] = Γ (q + 1) .

We have found that

(38) max
{∥∥

aD
q
t f (t)

∥∥
∞,[a, a+b

2 ] ,
∥∥
tD

q
bf (t)

∥∥
∞,[ a+b

2 ,b]

}
= Γ (q + 1) .

Therefore the right hand side of (31) for f becomes

(39)
Γ (q + 1)

Γ (q + 2)

(b− a)
q+1

2q
=

(b− a)
q+1

(q + 1) 2q
.

But we notice that∫ b

a

∣∣f (t)
∣∣ dt =

∫ b

a

f (t) dt

=

∫ a+b
2

a

(t− a)
q
dt+

∫ b

a+b
2

(b− t)q dt

=
1

(q + 1)

[(
b− a

2

)q+1

+

(
b− a

2

)q+1
]

=
1

(q + 1)

(
2

(
b− a

2

)q+1
)

=
(b− a)

q+1

(q + 1) 2q
.(40)

By (39) and (40), inequality (31) is attained by f , that is (25) is sharp. �

In the next assume that (X,F) is a measurable space and (R+) R is the set
of all (nonnegative) real numbers.

We recall some concepts and some elementary results of capacity and the
Choquet integral [2, 3].
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Definition. A set function µ : F → R+ is called a non-additive measure (or
capacity) if it satisfies

(1) µ (∅) = 0;
(2) µ (A) ≤ µ (B) for any A ⊆ B and A,B ∈ F .
The non-additive measure µ is called concave if

(41) µ (A ∪B) + µ (A ∩B) ≤ µ (A) + µ (B)

for all A,B ∈ F . In the literature the concave non-additive measure is known
as submodular or 2-alternating non-additive measure. If the above inequality
is reverse, µ is called convex. Similarly, convexity is called supermodularity or
2-monotonicity, too.

First note that the Lebesgue measure λ for an interval [a, b] is defined by
λ ([a, b]) = b−a, and that given a distortion function m, which is increasing (or
non-decreasing) and such that m (0) = 0, the measure µ (A) = m (λ (A)) is a
distorted Lebesgue measure. We denote a Lebesgue measure with distortion m
by µ = µm. It is known that µm is concave (convex) if m is a concave (convex)
function.

The family of all the nonnegative, measurable function

f : (X,F)→
(
R+,B

(
R+
))

is denoted as L+
∞, where B (R+) is the Borel σ-field of R+. The concept of the

integral with respect to a non-additive measure was introduced by Choquet [2].

Definition. Let f ∈ L+
∞. The Choquet integral of f with respect to non-

additive measure µ on A ∈ F is defined by

(42) (C)

∫
A

fdµ :=

∫ ∞
0

µ ({x : f (x) ≥ t} ∩A) dt,

where the integral on the right-hand side is a Riemann integral.
Instead of (C)

∫
X
fdµ, we shall write (C)

∫
fdµ. If (C)

∫
fdµ < ∞, we say

that f is Choquet integrable and we write

L1
C (µ) =

{
f : (C)

∫
fdµ <∞

}
.

The next lemma summarizes the basic properties of Choquet integrals [3].

Lemma 3.2. Assume that f, g ∈ L1
C (µ).

(1) (C)
∫

1Adµ = µ (A), A ∈ F .
(2) (Positive homogeneity) For all λ ∈ R+, we have (C)

∫
λfdµ = λ ·

(C)
∫
fdµ.

(3) (Translation invariance) For all c ∈ R, we have (C)
∫

(f + c) dµ =
(C)

∫
fdµ+ c.

(4) (Monotonicity in the integrand) If f ≤ g, then we have

(C)

∫
fdµ ≤ (C)

∫
gdµ.
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(Monotonicity in the set function) If µ ≤ ν, then we have (C)
∫
fdµ ≤

(C)
∫
fdν.

(5) (Subadditivity) If µ is concave, then

(C)

∫
(f + g) dµ ≤ (C)

∫
fdµ+ (C)

∫
gdµ.

(Superadditivity) If µ is convex, then

(C)

∫
(f + g) dµ ≥ (C)

∫
fdµ+ (C)

∫
gdµ.

(6) (Comonotonic additivity) If f and g are comonotonic, then

(C)

∫
(f + g) dµ = (C)

∫
fdµ+ (C)

∫
gdµ,

where we say that f and g are comonotonic, if for any x, x′ ∈ X, then

(f (x)− f (x′)) (g (x)− g (x′)) ≥ 0.

We next mention the amazing result from [10], which permits us to compute
the Choquet integral when the non-additive measure is a distorted Lebesgue
measure.

Theorem 3.3. Let f be a nonnegative and measurable function on R+ and
µ = µm be a distorted Lebesgue measure. Assume that m (x) and f (x) are
both continuous and m (x) is differentiable. When f is an increasing (non-
decreasing) function on R+, the Choquet integral of f with respect to µm on
[0, t] is represented as

(43) (C)

∫
[0,t]

fdµm =

∫ t

0

m′ (t− x) f (x) dx,

however, when f is a decreasing (non-increasing) function on R+, the Choquet
integral of f is

(44) (C)

∫
[0,t]

fdµm =

∫ t

0

m′ (x) f (x) dx.

We make:

Remark 3.4. From now on we assume that f : R+ → R+ is a monotone
continuous function, and µ = µm, i.e., µ (A) = m (λ (A)), denotes a distorted
Lebesgue measure, where m is such that m (0) = 0, m is increasing (non-
decreasing) and continuously differentiable.

By Theorem 3.3 and mean value theorem for integrals we get:
i) If f is an increasing (non-decreasing) function on R+, we have

(C)

∫
[0,t∗]

fdµm
(43)
=

∫ t∗

0

m′ (t∗ − x) f (x) dx
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= m′ (t∗ − ξ)
∫ t∗

0

f (x) dx, where ξ ∈ (0, t∗) , t∗ > 0.(45)

ii) If f is a decreasing (non-increasing) function on R+, we have

(46) (C)

∫
[0,t∗]

fdµm
(44)
=

∫ t∗

0

m′ (x) f (x) dx = m′ (ξ)

∫ t∗

0

f (x) dx,

where ξ ∈ (0, t∗) , t∗ > 0.
We denote by

(47) γ (t∗, ξ) :=

{
m′ (t∗ − ξ) , when f is increasing (non-decreasing)
m′ (ξ) , when f is decreasing (non-increasing),

for some ξ ∈ (0, t∗) per case, t∗ > 0.
We give the following Choquet-fractional-Polya inequality without any boun-

dary conditions.

Theorem 3.5. Let 0 < q < 1, f = f |[0,t∗], t∗ > 0, be continuous and all

considered as in Remark 3.4. Assume further that 0D
q
t f (t) ∈ L∞

([
0, t

∗

2

])
and tD

q
t∗f (t) ∈ L∞

([
t∗

2 , t
∗
])

. Set

(48) N (f) (t∗) := max
{
‖0Dq

t f (t)‖∞,[0, t∗2 ] , ‖tD
q
t∗f (t)‖∞,[ t∗

2 ,t
∗]

}
, t∗ > 0.

Then

(49) (C)

∫
[0,t∗]

fdµm ≤ γ (t∗, ξ)N (f) (t∗)
(t∗)

q+1

Γ (q + 2) 2q
, t∗ > 0.

Clearly here f can not be a non-zero constant.

Proof. By Theorem 3.1 and earlier comments. �

We give some examples for m.

Remark 3.6. i) If m (t) = t
1+t , t ∈ R+, then m (0) = 0, m (t) ≥ 0, m′ (t) =

1
(1+t)2

> 0, and m is increasing. Then γ (t∗, ξ) ≤ 1.

ii) If m (t) = 1− e−t ≥ 0, t ∈ R+, then m (0) = 0, m′ (t) = e−t > 0, and m
is increasing. Then γ (t∗, ξ) ≤ 1.

iii) If m (t) = et − 1 ≥ 0, t ∈ R+, m (0) = 0, m′ (t) = et > 0, and m is
increasing. Then γ (t∗, ξ) ≤ et∗ .

iv) If m (t) = sin t, for t ∈
[
0, π2

]
, we get m (0) = 0, m′ (t) = cos t ≥ 0, and

m is increasing. Then γ (t∗, ξ) ≤ 1.
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